BMJ Open
November 2024
Introduction: The TriAD study will assess the Xpert MTB/XDR (Xpert XDR; Cepheid) assay to detect tuberculosis (TB) drug resistance in sputum testing positive for TB to rapidly triage and treat patients with a short all-oral treatment regimen.
Methods And Analysis: In this study, approximately 4800 Xpert MTB/RIF or Ultra MTB-positive patients (irrespective of rifampicin (RIF) resistance (RR) status) from several clinical sites across South Africa, Nigeria and Ethiopia will be enrolled over 18-24 months and followed-up for approximately 6 months post-TB treatment completion. Participants will be enrolled into one of two cohorts based on Xpert MTB/RIF and Xpert XDR results: () positive participants with RR in Cohort 1 (n=880) and positive RIF susceptible TB patients with isoniazid mono-resistance irrespective of presence of resistance to fluoroquinolones, second-line injectable drugs or ethionamide in Cohort 2 (n=400).
J Clin Microbiol
October 2024
Unlabelled: We investigated the performance of the targeted next-generation sequencing (tNGS)-based Oxford Nanopore Diagnostics AmPORE TB assay, recently approved by the World Health Organization (WHO) as tuberculosis (TB) diagnostic test for the detection of drug resistance on respiratory specimens. A total of 104 DNA samples from Xpert MTB/RIF-positive TB sputum specimens were tested using the AmPORE TB kit, with the GenoScreen Deeplex Myc-TB as a comparative tNGS assay. For AmPORE TB, DNA samples were divided into five sequencing runs on the MinION device.
View Article and Find Full Text PDFLack of appropriate early diagnostic tools for drug-resistant tuberculosis (DR-TB) and their incomplete drug susceptibility testing (DST) profiling is concerning for TB disease control. Existing methods, such as phenotypic DST (pDST), are time-consuming, while Xpert MTB/RIF (Xpert) and line probe assay (LPA) are limited to detecting resistance to few drugs. Targeted next-generation sequencing (tNGS) has been recently approved by WHO as an alternative approach for rapid and comprehensive DST.
View Article and Find Full Text PDFThe Mycobacterium tuberculosis complex (MTBC) includes several human- and animal-adapted pathogens. It is thought to have originated in East Africa from a recombinogenic Mycobacterium canettii-like ancestral pool. Here, we describe the discovery of a clinical tuberculosis strain isolated in Ethiopia that shares archetypal phenotypic and genomic features of M.
View Article and Find Full Text PDFTargeted next-generation sequencing (tNGS) from clinical specimens has the potential to become a comprehensive tool for routine drug-resistance (DR) prediction of complex strains (MTBC), the causative agent of tuberculosis (TB). However, TB mainly affects low- and middle-income countries, in which the implementation of new technologies have specific needs and challenges. We propose a model for programmatic implementation of tNGS in settings with no or low previous sequencing capacity/experience.
View Article and Find Full Text PDF