The brain consists of many cell classes yet electrophysiology recordings are typically unable to identify and monitor their activity in the behaving animal. Here, we employed a systematic approach to link cellular, multi-modal properties from experiments with recorded units via computational modeling and optotagging experiments. We found two one-channel and six multi-channel clusters in mouse visual cortex with distinct properties in terms of activity, cortical depth, and behavior.
View Article and Find Full Text PDFThe brain consists of many cell classes yet in vivo electrophysiology recordings are typically unable to identify and monitor their activity in the behaving animal. Here, we employed a systematic approach to link cellular, multi-modal in vitro properties from experiments with in vivo recorded units via computational modeling and optotagging experiments. We found two one-channel and six multi-channel clusters in mouse visual cortex with distinct in vivo properties in terms of activity, cortical depth, and behavior.
View Article and Find Full Text PDFTemporal lobe epilepsy is the fourth most common neurological disorder, with about 40% of patients not responding to pharmacological treatment. Increased cellular loss is linked to disease severity and pathological phenotypes such as heightened seizure propensity. While the hippocampus is the target of therapeutic interventions, the impact of the disease at the cellular level remains unclear.
View Article and Find Full Text PDFWhich cell types constitute brain circuits is a fundamental question, but establishing the correspondence across cellular data modalities is challenging. Bio-realistic models allow probing cause-and-effect and linking seemingly disparate modalities. Here, we introduce a computational optimization workflow to generate 9,200 single-neuron models with active conductances.
View Article and Find Full Text PDF