The G protein-coupled receptor (GPCR) CXCR4 is involved in bone marrow tropism and survival of chronic lymphocytic leukemia (CLL) cells. The function of the GPCRs cysteinyl leukotriene receptor 1 (CysLT1) and CysLT2 remains elusive. Here we demonstrate that in CLL and normal B lymphocytes, CysLT1 mRNA is consistently expressed, in contrast to low CysLT2 levels.
View Article and Find Full Text PDFCytokines and chemokines control hematopoietic stem and progenitor cell (HPC) proliferation and trafficking. However, the role of nonpeptide mediators in the bone marrow microenvironment has remained elusive. Particularly CysLT(1), a G protein-coupled receptor recognizing inflammatory mediators of the cysteinyl leukotriene family, is highly expressed in HPCs.
View Article and Find Full Text PDFSphingosine 1-phosphate (S1P) is an ubiquitously present extracellular lipid mediator that is released by several cell types, particularly by activated platelets. The effects of S1P are mediated by a specific family of G protein-coupled sphingosine 1-phosphate receptors (S1P1-S1P5). We demonstrate that S1P acts on hematopoietic progenitor cells as a chemotactic factor, attracting peripheral blood CD34(+) cells in vitro.
View Article and Find Full Text PDFStem and progenitor cells (PCs) of various lineages have become attractive vehicles to improve therapeutic gene delivery to cancers, notably glioblastoma. Here we report that adult human and murine haematopoietic PCs display a tropism for intracerebral gliomas but not for normal brain tissue in mice. Organotypic hippocampal slice culture and spheroid confrontation assays confirm a directed PC migration towards glioma cells ex vivo and in vitro.
View Article and Find Full Text PDFExpansion of hematopoietic progenitor cells (HPC) in the presence of endothelium has been shown to result in grafts capable of restoring hematopoiesis in a myeloablated host. However, the use of xenogeneic endothelium or cell lines may carry risks in a clinical transplantation setting. We explored the feasibility of cord blood progenitor cell expansion in vitro in an autologous coculture system using umbilical vein endothelial cells (HUVEC).
View Article and Find Full Text PDF