Publications by authors named "A M Atrazhev"

Genetically encoded libraries (GEL) are increasingly being used for the discovery of ligands for "undruggable" targets that cannot be addressed with small molecules. Foundational GEL platforms like phage-, yeast-, ribosome-, and mRNA-display have enabled the display of libraries composed of 20 natural amino acids (20AA). Unnatural amino acids (UAA) and chemical post-translational modification (cPTM) expanded GEL beyond the 20AA space to yield unnatural linear, cyclic, and bicyclic peptides.

View Article and Find Full Text PDF
Article Synopsis
  • Selective detection of changes in the glycocalyx is a growing area in targeted therapies, focusing on identifying small alterations in cell surface glycans.
  • The study introduces a DNA-barcoded phage system, LiLA, which uses multivalent lectin displays to recognize subtle glycan density variations on normal and cancer cells effectively.
  • This innovative approach allows better in situ detection of glycocalyx differences in cancer stem cells compared to current technologies, highlighting its potential for improved disease monitoring and treatment strategies.
View Article and Find Full Text PDF

Glycans constitute a significant fraction of biomolecular diversity on cellular surfaces across all kingdoms of life. As the structure of glycans is not directly encoded by the organism's DNA, it is impossible to use high-throughput DNA technologies to study the role of cellular glycosylation or to understand how glycocalyx is recognized by glycan-binding proteins (GBPs). To address this gap, we recently described a liquid glycan array (LiGA) platform that allows profiling of glycan-GBP interactions on the surface of live cells in vitro and in vivo using next-generation sequencing.

View Article and Find Full Text PDF

Phage display links the phenotype of displayed polypeptides with the DNA sequence in the phage genome and offers a universal method for the discovery of proteins with novel properties. However, the display of large multisubunit proteins on phages remains a challenge. A majority of protein display systems are based on monovalent phagemid constructs, but methods for the robust display of multiple copies of large proteins are scarce.

View Article and Find Full Text PDF

Flow cytomtery (FCM) has become a standard approach to enumerate viruses in water research. However, the nature of the fluorescent signal in flow cytometric analysis of water samples and the mechanism of its formation, have not been addressed for bacteriophages expected in wastewaters. Here we assess the behaviour of fluorescent DNA-staining dyes in aqueous solutions, as well as sensitivity and accuracy of FCM for enumeration of DNA-stained model bacteriophages λ, P1, and T4.

View Article and Find Full Text PDF