Publications by authors named "A M Arutyunyan"

Non-canonical nucleic acid structures play significant roles in cellular processes through selective interactions with proteins. While both natural and artificial G-quadruplexes have been extensively studied, the functions of i-motifs remain less understood. This study investigates the artificial aptamer BV42, which binds strongly to influenza A virus hemagglutinin and unexpectedly retains its i-motif structure even at neutral pH.

View Article and Find Full Text PDF

Viral infections and many other dangerous diseases are accompanied by the development of oxidative stress, which is a consequence of an increase in the level of the reactive oxygen species (ROS). In this regard, the search for effective antioxidants remains highly relevant. We tested fullerenol C(OH) in the context of the connection between its self-assembly in aqueous solutions and cell culture media, antiradical activity, UV cytoprotective action, and antiviral activity against international reference strains of influenza virus A(H1N1)pdm09, A(H3N2), and B subtypes in vitro on the MDCK cell line.

View Article and Find Full Text PDF

Using a computer modeling approach, we proposed a structure for a potential GC-specific DNA ligand, which could form a complex with DNA in the minor groove similar to that formed by Hoechst 33258 at DNA AT-enriched sites. According to this model, , a bisbenzoxazole ligand, was synthesized. The results of spectrophotometric methods supported the complex formation of the compound under study with DNA differing in the nucleotide composition.

View Article and Find Full Text PDF

The Banff classification is useful for diagnosing renal transplant rejection. However, it has limitations due to subjectivity and varying concordance in physicians' assessments. Artificial intelligence (AI) can help standardize research, increase objectivity and accurately quantify morphological characteristics, improving reproducibility in clinical practice.

View Article and Find Full Text PDF

Cytochrome (CytC), a one-electron carrier, transfers electrons from complex to cytochrome oxidase (CcO) in the electron-transport chain. Electrostatic interaction with the partners, complex and CcO, is ensured by a lysine cluster near the heme forming the Universal Binding Site (UBS). We constructed three mutant variants of mitochondrial CytC with one (2Mut), four (5Mut), and five (8Mut) Lys->Glu substitutions in the UBS and some compensating Glu->Lys substitutions at the periphery of the UBS for charge compensation.

View Article and Find Full Text PDF