Publications by authors named "A M Amthor"

We have performed the first direct measurement of the ^{83}Rb(p,γ) radiative capture reaction cross section in inverse kinematics using a radioactive beam of ^{83}Rb at incident energies of 2.4 and 2.7A  MeV.

View Article and Find Full Text PDF

We present results from time-of-flight nuclear mass measurements at the National Superconducting Cyclotron Laboratory that are relevant for neutron star crust models. The masses of 16 neutron-rich nuclei in the scandium-nickel range were determined simultaneously, with the masses of (61)V, (63)Cr, (66)Mn, and (74)Ni measured for the first time with mass excesses of -30.510(890) MeV, -35.

View Article and Find Full Text PDF

The results of measurements of the production of neutron-rich nuclei by the fragmentation of a 76Ge beam are presented. The cross sections were measured for a large range of nuclei including 15 new isotopes that are the most neutron-rich nuclides of the elements chlorine to manganese (50Cl, 53Ar, ;{55,56}K, ;{57,58}Ca, ;{59,60,61}Sc, ;{62,63}Ti, ;{65,66}V, 68Cr, 70Mn). The enhanced cross sections of several new nuclei relative to a simple thermal evaporation framework, previously shown to describe similar production cross sections, indicates that nuclei in the region around 62Ti might be more stable than predicted by current mass models and could be an indication of a new island of inversion similar to that centered on 31Na.

View Article and Find Full Text PDF

The beta-decay properties of the N=Z nuclei 96Cd, 98In, and 100Sn have been studied. These nuclei were produced at the National Superconducting Cyclotron Laboratory by fragmenting a 120 MeV/nucleon 112Sn primary beam on a Be target. The resulting radioactive beam was filtered in the A1900 and the newly commissioned Radio Frequency Fragment Separator to achieve a purity level suitable for decay studies.

View Article and Find Full Text PDF

A fundamental question in nuclear physics is what combinations of neutrons and protons can make up a nucleus. Many hundreds of exotic neutron-rich isotopes have never been observed; the limit of how many neutrons a given number of protons can bind is unknown for all but the lightest elements, owing to the delicate interplay between single particle and collective quantum effects in the nucleus. This limit, known as the neutron drip line, provides a benchmark for models of the atomic nucleus.

View Article and Find Full Text PDF