Intramembrane-cleaving proteases (I-CLiPs) play crucial roles in physiological and pathological processes, such as Alzheimer's disease and cancer. However, the mechanisms of substrate recognition by I-CLiPs remain poorly understood. The aspartic I-CLiP presenilin is the catalytic subunit of the γ-secretase complex, which releases the amyloid-β peptides (Aβs) through intramembrane proteolysis of the transmembrane domain of the amyloid precursor protein (APPTM).
View Article and Find Full Text PDFIntramembrane-cleaving proteases (I-CLiPs) activate pools of single-pass helical membrane protein signaling precursors that are key in the physiology of prokaryotic and eukaryotic cells. Proteases typically cleave peptide bonds within extended or flexible regions of their substrates, and thus the mechanism underlying the ability of I-CLiPs to hydrolyze the presumably α-helical transmembrane domain (TMD) of these membrane proteins is unclear. Using deep-ultraviolet resonance Raman spectroscopy in combination with isotopic labeling, we show that although predominantly in canonical α-helical conformation, the TMD of the established I-CLiP substrate Gurken displays 3-helical geometry.
View Article and Find Full Text PDFWe present a new method based on deep-UV resonance Raman spectroscopy to determine the backbone conformation of intramembrane protease substrates. The classical amide vibrational modes reporting on the conformation of just the transmembrane region of the substrate can be resolved from solvent exchangeable regions outside the detergent micelle by partial deuteration of the solvent. In the presence of isotopically triple-labeled intramembrane protease, these amide modes can be accurately measured to monitor the transmembrane conformation of the substrate during intramembrane proteolysis.
View Article and Find Full Text PDFElectron crystallography is well suited for studying the structure of membrane proteins in their native lipid bilayer environment. This technique relies on electron cryomicroscopy of two-dimensional (2D) crystals, grown generally by reconstitution of purified membrane proteins into proteoliposomes under conditions favoring the formation of well-ordered lattices. Growing these crystals presents one of the major hurdles in the application of this technique.
View Article and Find Full Text PDFAlthough cell-free expression is a relative newcomer to the biochemical toolbox, it has already been reviewed extensively, even in the more specialized cases such as membrane protein expression, nanolipoprotein particles, and applications to crystallography and nuclear magnetic resonance (NMR). Solid-state NMR is also a newcomer to the structural biology toolbox, with its own specificities in terms of sample preparation. Cell-free expression and solid-state NMR are a promising combination that has already proven useful for the structural study of membrane proteins in their native environment, the hydrated lipid bilayer.
View Article and Find Full Text PDF