Edible electronics is emerging in recent years motivated by a diverse number of healthcare applications, where sensors can be safely ingested without the need for any medical supervision. However, the current lack of stable and well-performing edible semiconductors needs to be addressed to reach technological maturity and allow the surge of a new generation of edible circuits. In the quest for good-performing edible semiconductors, this study has explored the possibility of considering materials that are not regulated for intentional ingestion, yet are daily swallowed with no adverse reactions, such as pigments contained in toothpaste.
View Article and Find Full Text PDFHLA-A*02:01:189 differs from HLA-A*02:01:01:01 by one nucleotide substitution in Exon 3, codon 101 TGC > TGT.
View Article and Find Full Text PDFCorrection for 'Chitosan-gated organic transistors printed on ethyl cellulose as a versatile platform for edible electronics and bioelectronics' by Alina S. Sharova , , 2023, , 10808-10819, https://doi.org/10.
View Article and Find Full Text PDFThe novel HLA-A*30:221 allele differs from HLA-A*30:01:01:01 by one nucleotide substitution in Exon 7.
View Article and Find Full Text PDFGrapevine varieties from "Douro Superior" (NE Portugal) experience high temperatures, solar radiation, and water deficit during the summer. This summer's stressful growing conditions induce nucleic acids, lipids, and protein oxidation, which cause cellular, physiological, molecular, and biochemical changes. Cell cycle anomalies, mitosis delay, or cell death may occur at the cellular level, leading to reduced plant productivity.
View Article and Find Full Text PDF