Monitoring sandy shoreline evolution from years to decades is critical to understand the past and predict the future of our coasts. Optical satellite imagery can now infer such datasets globally, but sometimes with large uncertainties, poor spatial resolution, and thus debatable outcomes. Here we validate and analyse satellite-derived-shoreline positions (1984-2021) along the Atlantic coast of Europe using a moving-averaged approach based on coastline characteristics, indicating conservative uncertainties of long-term trends around 0.
View Article and Find Full Text PDFIn this study, we present a novel modeling framework that provides a stylized representation of coastal adaptation and migration dynamics under sea level rise (SLR). We develop an agent-based model that simulates household and government agents adapting to shoreline change and increasing coastal flood risk. This model is coupled to a gravity-based model of migration to simulate coastward migration.
View Article and Find Full Text PDFClimate change and human activity threaten sea turtle nesting beaches through increased flooding and erosion. Understanding the environmental characteristics that enable nesting can aid to preserve and expand these habitats. While numerous local studies exist, a comprehensive global analysis of environmental influences on the distribution of sea turtle nesting habitats remains largely unexplored.
View Article and Find Full Text PDF