Publications by authors named "A Lopera"

This study focuses on designing and evaluating scaffolds with essential properties for bone regeneration, such as biocompatibility, macroporous geometry, mechanical strength, and magnetic responsiveness. The scaffolds are made using 3D printing with acrylic resin and iron oxides synthesized through solution combustion. Utilizing triply periodic minimal surfaces (TPMS) geometry and mask stereolithography (MSLA) printing, the scaffolds achieve precise geometrical features.

View Article and Find Full Text PDF

The Cu complexes of three [1 + 1] azacyclophane macrocycles having the 1-pyrazole ring as the spacer and the pentaamine 1,5,8,11,15-pentaazadecane (L1) or hexaamines 1,5,8,12,15,19-hexaazanonadecane (L2) and 1,5,9,13,17,21-hexaazaheneicosane (L3) as bridges show endo- coordination of the pyrazolate bridge giving rise to discrete monomeric species. Previously reported pyrazolacyclophanes evidenced, however, exo-coordination with the formation of dimeric species of 2 : 2, 3 : 2 or even 4 : 2 Cu : L stoichiometry. The complexes have been characterized in solution using potentiometric studies, UV-Vis spectroscopy, paramagnetic NMR, cyclic voltammetry and mass spectrometry.

View Article and Find Full Text PDF

Biocompatible ceramic scaffolds offer a promising approach to address the challenges in bone reconstruction. Wollastonite, well-known for its exceptional biocompatibility, has attracted significant attention in orthopedics and craniofacial fields. However, the antimicrobial properties of wollastonite have contradictory findings, necessitating further research to enhance its antibacterial characteristics.

View Article and Find Full Text PDF

The avocado cv. Hass is one of the most dynamic fruits in the world and is of particular significance in tropical areas, where climate variability phenomena have a high impact on productivity and sustainability. Nanotechnology-based tools could be an alternative to mitigate and/or adapt plants to these phenomena.

View Article and Find Full Text PDF

Several diseases and injuries cause irreversible damage to bone tissues, which may require partial or total regeneration or replacement. Tissue engineering suggests developing substitutes that may contribute to the repair or regeneration process by using three-dimensional lattices (scaffolds) to create functional bone tissues. Herein, scaffolds comprising polylactic acid and wollastonite particles enriched with propolis extracts from the Arauca region of Colombia were developed as gyroid triply periodic minimal surfaces using fused deposition modeling.

View Article and Find Full Text PDF