Publications by authors named "A Longhini"

Cell-intrinsic mechanisms of immunogenicity in ovarian cancer (OC) are not well understood. Damaging mutations in the SWI/SNF chromatin remodeling complex, such as (BRG1), are associated with improved response to immune checkpoint blockade; however, the mechanism by which this occurs is unclear. We found that loss in OC models resulted in increased cancer cell-intrinsic immunogenicity, characterized by up-regulation of long-terminal RNA repeats, increased expression of interferon-stimulated genes, and up-regulation of antigen presentation machinery.

View Article and Find Full Text PDF

Purpose: The importance of the DNA damage response in mediating effects of radiotherapy (RT) has galvanized efforts to target this pathway with radiosensitizers. Yet early clinical trials of this approach have failed to yield a benefit in unselected populations. We hypothesized that ataxia-telangiectasia mutated (Atm)-null tumors would demonstrate genotype-specific synergy between RT and an inhibitor of the DNA damage response protein ataxia-telangiectasia and Rad3-related (ATR) kinase.

View Article and Find Full Text PDF

(Cm) has reemerged as a moderately prevalent infectious agent in research mouse colonies. Despite its' experimental use, few studies evaluate Cm's effects on immunocompetent mice following its natural route of infection. A Cm field isolate was administered (orogastric gavage) to 8-week-old female BALB/cJ (C) mice.

View Article and Find Full Text PDF

Introduction: studies of cancer biology and assessment of therapeutic efficacy are critical to advancing cancer research and ultimately improving patient outcomes. Murine cancer models have proven to be an invaluable tool in pre-clinical studies. In this context, multi-parameter flow cytometry is a powerful method for elucidating the profile of immune cells within the tumor microenvironment and/or play a role in hematological diseases.

View Article and Find Full Text PDF

Prion-like spread of disease-specific tau conformers is a hallmark of all tauopathies. A 19-residue probe peptide containing a P301L mutation and spanning the R2/R3 splice junction of tau folds and stacks into seeding-competent fibrils and induces aggregation of 4R, but not 3R tau. These tau peptide fibrils propagate aggregated intracellular tau over multiple generations, have a high β-sheet content, a colocalized lipid signal, and adopt a well-defined U-shaped fold found in 4R tauopathy brain-derived fibrils.

View Article and Find Full Text PDF