Malignant melanoma (MM) is one of the deadliest skin cancers. mutation status plays a predominant role in the management of MM patients. The aim of this study was to compare mutational testing performed by conventional nucleotide sequencing approaches with either real-time polymerase chain reaction (rtPCR) or next-generation sequencing (NGS) assays in a real-life, hospital-based series of advanced MM patients.
View Article and Find Full Text PDFSinonasal mucosal melanoma (SNM) is a rare and aggressive type of melanoma, and because of this, we currently have a limited understanding of its genetic and molecular constitution. The incidence among SNMs of somatic mutations in the genes involved in the main molecular pathways, which have been largely associated with cutaneous melanoma, is not yet fully understood. Through a next-generation sequencing (NGS) approach using a panel of 25 genes involved in melanoma pathogenesis customized by our group, we performed a mutation analysis in a cohort of 25 SNM patients.
View Article and Find Full Text PDFBackground: Cutaneous malignant melanoma (CMM) is one of the most common skin cancers worldwide. Limited information is available in the current scientific literature on the concordance of genetic alterations between primary and metastatic CMM. In the present study, we performed next-generation sequencing (NGS) analysis of the main genes participating in melanoma pathogenesis and progression, among paired primary and metastatic lesions of CMM patients, with the aim to evaluate levels of discrepancies in mutational patterns.
View Article and Find Full Text PDF