Publications by authors named "A Ligresti"

Cannabinoid receptor subtype 2 (CB2R) is emerging as a pivotal biomarker to identify the first steps of inflammation-based diseases such as cancer and neurodegeneration. There is an urgent need to find specific probes that may result in green and safe alternatives to the commonly used radiative technologies, to deepen the knowledge of the CB2R pathways impacting the onset of the above-mentioned pathologies. Therefore, based on one of the CB2R pharmacophores, we developed a class of fluorescent -adamantyl-1-alkyl-4-oxo-1,4-dihydroquinoline-3-carboxamide derivatives spanning from the green to the near-infrared (NIR) regions of the light spectrum.

View Article and Find Full Text PDF

The cannabinoid system is one of the most investigated neuromodulatory systems because of its involvement in multiple pathologies such as cancer, inflammation, and psychiatric diseases. Recently, the CB2 receptor has gained increased attention considering its crucial role in modulating neuroinflammation in several pathological conditions like neurodegenerative diseases. Here we describe the rational design of pyrrole-based analogues, which led to a potent and pharmacokinetically suitable CB2 full agonist particularly effective in improving cognitive functions in a scopolamine-induced amnesia murine model.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative form of dementia characterized by the loss of synapses and a progressive decline in cognitive abilities. Among current treatments for AD, acetylcholinesterase (AChE) inhibitors have efficacy limited to symptom relief, with significant side effects and poor compliance. Pharmacological agents that modulate the activity of type-2 cannabinoid receptors (CB2R) of the endocannabinoid system by activating or blocking them have also been shown to be effective against neuroinflammation.

View Article and Find Full Text PDF

New potent, selective monoacylglycerol lipase (MAGL) inhibitors based on the azetidin-2-one scaffold ((±)--, (±)--, and (±)--) were developed as irreversible ligands, as demonstrated by enzymatic and crystallographic studies for (±)-, (±)-, and (±)-. X-ray analyses combined with extensive computational studies allowed us to clarify the binding mode of the compounds. was identified as selective for MAGL when compared with other serine hydrolases.

View Article and Find Full Text PDF