Inappropriate, excessive, or overly strenuous training of sport horses can result in long-term injury, including the premature cessation of a horse's sporting career. As a countermeasure, this study demonstrates the easy implementation of a biomechanical load monitoring system consisting of five commercial, multi-purpose inertial sensor units non-invasively attached to the horse's distal limbs and trunk. From the data obtained, specific parameters for evaluating gait and limb loads are derived, providing the basis for objective exercise load management and successful injury prevention.
View Article and Find Full Text PDFDue to Achilles tendon compliance, passive ankle stiffness is insufficient to stabilise the body when standing. This results in 'paradoxical' muscle movement, whereby calf muscles tend to shorten during forward body sway. Natural variation in stiffness may affect this movement.
View Article and Find Full Text PDFObjective: To validate a novel technique to measure limb stiffness in a clinical setting.
Animals: Three horses and three ponies owned by the Royal Veterinary College.
Procedures: Limb stiffness indices for both forelimbs were first derived using the gold standard of kinematic analysis.
Background: Advances in genetic and pharmaceutical technology and pediatric care have enabled treatment options for an increasing number of rare diseases in affected children. However, as current treatment options are primarily of palliative nature, the Health-Related Quality of Life (HRQoL) and mental health of this impaired population and their siblings are of increasing importance. Among children and adolescents with rare diseases, those who are technology-dependent carry a high disease burden and are selected as the target population in our study.
View Article and Find Full Text PDF