The estimation of the time of death represents a highly complex and challenging task within the field of forensic medicine and science. It is essential to approach this matter with the utmost respect for human rights while acknowledging the inherent limitations of the current methods, which require continuous refinement and expansion. Forensic science recognizes the necessity to improve existing techniques and develop new, more accurate, and non-invasive procedures, such as physicochemical approaches, to enhance the precision and reliability of time of death determinations.
View Article and Find Full Text PDFDevelopments in science and technology lead to an increasing use of scientific evidence in litigation. Interdisciplinary research can improve current procedures and introduce new ones for the disclosure and examination of evidence. The dactyloscopic trace is used for personal identification by matching minutiae (the minimum required may vary by country) or for extracting DNA material from the trace under investigation.
View Article and Find Full Text PDFTailoring the defects in graphene and its related carbon allotropes has great potential to exploit their enhanced electrochemical properties for energy applications, environmental remediation, and sensing. Vertical graphene, also known as carbon nanowalls (CNWs), exhibits a large surface area, enhanced charge transfer capability, and high defect density, making it suitable for a wide range of emerging applications. However, precise control and tuning of the defect size, position, and density remain challenging; moreover, due to their characteristic labyrinthine morphology, conventional characterization techniques and widely accepted quality indicators fail or need to be reformulated.
View Article and Find Full Text PDFBackground: Ebola virus disease (EVD) survivors experience ocular sequelae including retinal lesions, cataracts, and vision loss. While monoclonal antibodies targeting the Ebola virus glycoprotein (EBOV-GP) have shown promise in improving prognosis, their effectiveness in mitigating ocular sequelae remains uncertain.
Methods: We developed and characterized a BSL-2-compatible immunocompetent mouse model to evaluate therapeutics targeting EBOV-GP by inoculating neonatal mice with vesicular stomatitis virus expressing EBOV-GP (VSV-EBOV).
Molecular physics plays a pivotal role in various fields, including medicine, pharmaceuticals, and broader industrial applications. This study aims to enhance the methods for producing specific optically active materials with distinct spectroscopic properties at the molecular level, which are crucial for these sectors, while prioritizing human safety in both production and application. Forensic science, a significant socio-economic field, often employs hazardous substances in analyzing friction ridges on porous surfaces, posing safety concerns.
View Article and Find Full Text PDF