Publications by authors named "A Leviatan"

We consider several classes of symmetries of the Dirac Hamiltonian in 3 + 1 dimensions, with axially deformed scalar and vector potentials. The symmetries include the known pseudospin and spin limits and additional symmetries which occur when the potentials depend on different variables. Supersymmetries are observed within each class and the corresponding charges are identified.

View Article and Find Full Text PDF

A generic procedure is proposed to construct many-body quantum Hamiltonians with partial dynamical symmetry. It is based on a tensor decomposition of the Hamiltonian and allows the construction of a hierarchy of interactions that have selected classes of solvable states. The method is illustrated in the SO(6) limit of the interacting boson model of atomic nuclei and applied to the nucleus 196Pt.

View Article and Find Full Text PDF

We show that partial dynamical symmetries can occur at critical points of quantum phase transitions, in which case underlying competing symmetries are conserved exactly by a subset of states, and mix strongly in other states. Several types of partial dynamical symmetries are demonstrated with the example of critical-point Hamiltonians for first- and second-order transitions in the framework of the interacting boson model, whose dynamical symmetries correspond to different shape phases in nuclei.

View Article and Find Full Text PDF

We show that the Dirac equation in (3+1) dimensions gives rise to supersymmetric patterns when the scalar and vector potentials are (i). Coulombic with arbitrary strengths or (ii). when their sum or difference is a constant, leading to relativistic pseudospin and spin symmetries.

View Article and Find Full Text PDF

At a critical point of a second-order phase transition the intrinsic energy surface is flat and there is no stable minimum value of the deformation. However, for a finite system, we show that there is an effective deformation which can describe the dynamics at the critical point. This effective deformation is determined by minimizing the energy surface after projection onto the appropriate symmetries.

View Article and Find Full Text PDF