We study hydrodynamic thermal transport in high-mobility two-dimensional electron systems placed in an in-plane magnetic field and identify a new mechanism of thermal magnetotransport. This mechanism is caused by drag between the electron populations with opposite spin polarization, which arises in the presence of a hydrodynamic flow of heat. In high mobility systems, spin drag results in strong thermal magnetoresistance, which becomes of the order of 100% at relatively small spin polarization of the electron liquid.
View Article and Find Full Text PDFPurpose: As population-based screening programs to identify genetic conditions in adults using genomic sequencing (GS) are increasingly available, validated patient-centered outcome measures are needed to understand participants' experience. We aimed to develop and validate an instrument to assess the perceived utility of GS in the context of adult screening.
Methods: Informed by a 5-domain conceptual model, we used a 5-step approach to instrument development and validation: (1) item writing, (2) cognitive testing, (3) pilot testing and item reduction, (4) psychometric testing, and (5) evaluation of construct validity.
The repertory of neurons generated by progenitor cells depends on their location along antero-posterior and dorso-ventral axes of the neural tube. To understand if recreating those axes was sufficient to specify human brain neuronal diversity, we designed a mesofluidic device termed Duo-MAPS to expose induced pluripotent stem cells (iPSC) to concomitant orthogonal gradients of a posteriorizing and a ventralizing morphogen, activating WNT and SHH signaling, respectively. Comparison of single cell transcriptomes with fetal human brain revealed that Duo-MAPS-patterned organoids generated the major neuronal lineages of the forebrain, midbrain, and hindbrain.
View Article and Find Full Text PDFPurpose: Measuring the effects of genomic sequencing (GS) on patients and families is critical for translational research. We aimed to develop and validate an instrument to assess parents' perceived utility of pediatric diagnostic GS.
Methods: Informed by a 5-domain conceptual model, the study comprised 5 steps: (1) item writing, (2) cognitive testing, (3) pilot testing and item reduction, (4) psychometric testing, and (5) evaluation of construct validity.
Interactions between endothelial cells (ECs) and mural pericytes (PCs) are critical in maintaining the stability and function of the microvascular wall. Abnormal interactions between these two cell types are a hallmark of progressive fibrotic diseases such as systemic sclerosis (also known as scleroderma). However, the role of PCs in signaling microvascular dysfunction remains underexplored.
View Article and Find Full Text PDF