Publications by authors named "A LeMaitre"

Vortex beams are currently drawing a great deal of interest, from fundamental research to several promising applications. While their generation in bulky optical devices limits their use in integrated complex systems, metasurfaces have recently proven successful in creating optical vortices, especially in the linear regime. In the nonlinear domain, of strategic importance for the future of classical and quantum information, to date orbital angular momentum has only been created in qualitative ways, without discussing discrepancies between design and experimental results.

View Article and Find Full Text PDF

Harnessing high-dimensional entangled states of light presents a frontier for advancing quantum information technologies, from fundamental tests of quantum mechanics to enhanced computation and communication protocols. In this context, the spatial degree of freedom stands out as particularly suited for on-chip integration. But while traditional demonstrations produce and manipulate path-entangled states sequentially with discrete optical elements, continuously coupled nonlinear waveguide systems offer a promising alternative where photons can be generated and interfere along the entire propagation length, unveiling novel capabilities within a reduced footprint.

View Article and Find Full Text PDF

Using conical optical fibers, we explore new methods for coupling light to nanophotonic structures operated in constrained environments. With a single-sided conical fiber taper, we demonstrate efficient coupling to an on-chip nanophotonic bus waveguide immersed in a liquid. In the aim of coupling light into a target whispering gallery disk resonator, we then replace such on-chip nanophotonic bus waveguide with two conical fibers joined face to face.

View Article and Find Full Text PDF

Electrical current pulses can be used to manipulate magnetization efficiently via spin-orbit torques. Pulse durations as short as a few picoseconds have been used to switch the magnetization of ferromagnetic films, reaching the terahertz regime. However, little is known about the reversal mechanisms and energy requirements in the ultrafast switching regime.

View Article and Find Full Text PDF

Switching of light polarization on the sub-picosecond timescale is a crucial functionality for applications in a variety of contexts, including telecommunications, biology and chemistry. The ability to control polarization at ultrafast speed would pave the way for the development of unprecedented free-space optical links and of novel techniques for probing dynamical processes in complex systems, as chiral molecules. Such high switching speeds can only be reached with an all-optical paradigm, i.

View Article and Find Full Text PDF