Objectives: Compelling evidence indicates a significant involvement of cortical lesions in the progressive phase of multiple sclerosis (MS), significantly contributing to late-stage disability. Despite the promise of ultra-high-field magnetic resonance imaging (MRI) in detecting cortical lesions, current evidence falls short in providing insights into the existence of such lesions during the early stages of MS or their underlying cause. This study delineated, at the early stage of MS, (1) the prevalence and spatial distribution of cortical lesions identified by 7 T MRI, (2) their relationship with white matter lesions, and (3) their clinical implications.
View Article and Find Full Text PDFFocal epilepsy is characterized by repeated spontaneous seizures that originate from cortical epileptogenic zone networks (EZN). Analysis of intracerebral recordings showed that subcortical structures, and in particular the thalamus, play an important role in seizure dynamics as well, supporting their structural alterations reported in the neuroimaging literature. Nonetheless, between-patient differences in EZN localization (e.
View Article and Find Full Text PDFBackground: To investigate the association of ihMT (inhom signals with the demyelination and remyelination phases of the acute cuprizone mouse model in comparison with histology, and to assess the extent of tissue damage and repair from MRI data.
Methods: Acute demyelination by feeding 0.2% cuprizone for five weeks, followed by a four-week remyelination period was applied on genetically modified plp-GFP mice.
Purpose: To identify T -filtering methods, which can specifically isolate various ranges of T components as they may be sensitive to different microstructural properties.
Methods: Modified Bloch-Provotorov equations describing a bi-T component biophysical model were used to simulate the inhomogeneous magnetization transfer (ihMT) signal from ihMTRAGE sequences at high RF power and low duty-cycle with different switching time values for the dual saturation experiment: Δt = 0.0, 0.