Masses of plastic and other anthropogenic debris on beaches of inner Seychelles and derived from 53 organised clean-ups have been analysed. Debris and plastic densities ranged from 0.0011 to 0.
View Article and Find Full Text PDFObjectives: Previous studies have established the role of the cortico-mesolimbic and descending pain modulation systems in chronic pain prediction. Mild traumatic brain injury (mTBI) is an acute pain model where chronic pain is prevalent and complicated for prediction. In this study, we set out to study whether functional connectivity (FC) of the nucleus accumbens (NAc) and the periaqueductal gray matter (PAG) is predictive of pain chronification in early-acute mTBI.
View Article and Find Full Text PDFChronic low-grade vascular inflammation and endothelial dysfunction significantly contribute to the pathogenesis of cardiovascular diseases. In endothelial cells (ECs), anti-inflammatory or pro-inflammatory signaling can be induced by different patterns of the fluid shear stress (SS) exerted by blood flow on ECs. Laminar blood flow with high magnitude is anti-inflammatory, while disturbed flow and laminar flow with low magnitude is pro-inflammatory.
View Article and Find Full Text PDFChanges in plasma membrane curvature and intracellular ionic strength are two key features of cell volume perturbations. In this hypothesis we present a model of the responsible molecular apparatus which is assembled of two molecular motors [non-muscle myosin II (NMMII) and protrusive actin polymerization], a spring [a complex between the plasma membrane (PM) and the submembrane actin-based cytoskeleton (smACSK) which behaves like a viscoelastic solid] and the associated signaling proteins. We hypothesize that this apparatus senses changes in both the plasma membrane curvature and the ionic strength and in turn activates signaling pathways responsible for regulatory volume increase (RVI) and regulatory volume decrease (RVD).
View Article and Find Full Text PDFEndothelial cells (ECs) are exposed to molecular dioxygen and its derivative reactive oxygen species (ROS). ROS are now well established as important signaling messengers. Excessive production of ROS, however, results in oxidative stress, a significant contributor to the development of numerous diseases.
View Article and Find Full Text PDF