Publications by authors named "A Lauer"

The living human inner ear is challenging to study because it is encased within dense otic capsule bone that limits access to biological tissue. Traditional temporal bone histopathology methods rely on lengthy, expensive decalcification protocols that take 9-10 months and reduce the types of tissue analysis possible due to RNA degradation. There is a critical need to develop methods to access fresh human inner ear tissue to better understand otologic diseases, such as Ménière's disease, at the cellular and molecular level.

View Article and Find Full Text PDF

The mammalian auditory system encodes sounds with subtypes of spiral ganglion neurons (SGNs) that differ in sound level sensitivity, permitting discrimination across a wide range of levels. Recent work suggests the physiologically-defined SGN subtypes correspond to at least three molecular subtypes. It is not known how information from the different subtypes converges within the cochlear nucleus.

View Article and Find Full Text PDF

Purpose: To evaluate the safety and efficacy of subretinal gene therapy using AGTC-501 (rAAV2tYF-GRK1-RPGR) in male participants with X-linked retinitis pigmentosa (XLRP).

Design: Phase 1/2, open-label, dose-escalation study.

Methods: Setting: Four centers in the United States.

View Article and Find Full Text PDF

Hearing mediates many behaviours critical for survival in echolocating bats, including foraging and navigation. Although most mammals are susceptible to progressive age-related hearing loss, the evolution of biosonar, which requires the ability to hear low-intensity echoes from outgoing sonar signals, may have selected against the development of hearing deficits in bats. Many echolocating bats exhibit exceptional longevity and rely on acoustic behaviours for survival to old age; however, relatively little is known about the ageing bat auditory system.

View Article and Find Full Text PDF
Article Synopsis
  • Bats are increasingly recognized as valuable models for aging research due to their long lifespan, living over 20 to 40 years in the wild or captivity.
  • Their unique biological traits, such as resistance to viral infections and efficient DNA repair mechanisms, offer insights that could enhance healthy aging in humans.
  • The review discusses eight specific areas where bat research can inform our understanding of aging, including genetics, immunity, neurobiology, and even aspects related to menopause, making bats potentially more relevant to human aging studies than traditional lab animals like rodents.
View Article and Find Full Text PDF