Publications by authors named "A Laquerbe"

Fanconi anemia (FA) is an inherited cancer-susceptibility disorder, characterized by genomic instability, hypersensitivity to DNA cross-linking agents, and a prolonged G2 phase of the cell cycle. We observed a marked dose-dependent accumulation of FA cells in the G2 compartment after treatment with 4,5',8-trimethylpsoralen (Me(3)Pso) in combination with 365 nm irradiation. Using bivariate DNA distribution methodology, we determined the proportion of replicating and arresting S-phase cells and observed that, whereas normal cells arrested DNA replication in the presence of Me(3)Pso cross-links and monoadducts, FA lymphoblasts failed to arrest DNA synthesis.

View Article and Find Full Text PDF

The principal cellular feature of Fanconi anemia (FA), an inherited cancer prone disorder, is a high level of chromosomal breakage, amplified after treatment with crosslinking agents. Three of the eight genes involved in FA have been cloned: FANCA, FANCC and FANCG. However, their biological functions remain unknown.

View Article and Find Full Text PDF

The hallmark of Fanconi anemia (FA), a rare inherited cancer prone disorder, is a high level of chromosome breakage, spontaneous and induced by cross-linking agents. The increased genomic instability of FA is reflected at the gene level by an overproduction of intragenic deletions. Two of the eight FA genes have been cloned, however, their function remains unknown.

View Article and Find Full Text PDF

To assess the role of a given genotoxic agent in the etiology of human cancers, it is useful to establish the mutational specificity of this agent. The aim of this study was to investigate whether the processing of psoralen photolesions, interstrand cross-links (CL) and monoadducts (MA), leaves a specific molecular signature in the mutational events produced at an endogenous locus, HPRT. Human lymphoblasts were treated by 4,5',8-trimethylpsoralen (Me3Pso) in association with a double irradiation protocol (365 plus 365 nm) which allows us to increase the proportion of CL for a given constant number of total photoadducts.

View Article and Find Full Text PDF

Radioadaptation to the mutagenic effect of ionizing radiation by pre-exposure of human cells to a low dose has been shown to decrease the proportion of HPRT- mutants of the deletion type. To determine whether point mutations would be affected by the adaptive treatment, the molecular nature of mutations induced after exposure to low, high or low plus high doses was established. DNA sequencing of 38 point mutants which still expressed mRNA was performed using reverse transcription/polymerase chain reaction amplification.

View Article and Find Full Text PDF