Waterborne polyurethane-urea dispersions (WPUD), which are based on fully biobased amorphous polyester polyol and isophorone diisocyanate (IPDI), have been successfully synthesized obtaining a finishing agent that provides textiles with an enhanced hydrophobicity and water column. Grafting of trans-cyclohexanediol isobutyl POSS (POSS-OH) to the biobased polymer backbone has also been investigated for the first time and its properties compared to a standard chain extender, 1,3-propanediol (PDO). The chemical structure of WPUD has been characterized by Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR).
View Article and Find Full Text PDFWaterborne polyurethane-urea dispersions (WPUD), which are based on 100% bio-based semi-crystalline polyester polyol and isophorone diisocyanate, have been successfully synthesized and doped with single-walled carbon nanotubes (SWCNT) to obtain a finishing agent that provides textiles with multifunctional properties. The chemical structure of WPUD has been characterized by Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). The thermal properties have been evaluated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dynamic mechanical thermal analysis (DMTA).
View Article and Find Full Text PDFHypertrophic cardiomyopathy (HCM) is a cardiac disease, characterized by marked hypertrophy and genetic variability. HCM has been associated with sarcomere protein mutations, being cardiac beta-myosin (coded by the MYH7 gene) and myosin binding protein C (coded by the MYBPC3 gene) the most frequently affected proteins. As in Venezuela only the clinical analysis are performed in HCM patients, we decided to search for genetic variations in the MYH7 gene.
View Article and Find Full Text PDF