A series consisting of new polyaminoisoprenyl derivatives were prepared in moderate to good chemical yields varying from 32 to 64% according to two synthetic pathways: (1) using a titanium-reductive amination reaction affording a 50/50 mixture of cis and trans isomers and (2) a direct nucleophilic substitution leading to a stereoselective synthesis of the compounds of interest. These compounds were then successfully evaluated for their antibiotic enhancer properties against resistant Gram-negative bacteria of four antibiotics belonging to four different families. The mechanism of action against of one of the most efficient of these chemosensitizing agents was precisely evaluated by using fluorescent dyes to measure outer-membrane permeability and to determine membrane depolarization.
View Article and Find Full Text PDFMultidrug resistant bacteria have been a worldwide concern for decades. Though new molecules that effectively target Gram-positive bacteria are currently appearing on the market, a gap remains in the treatment of infections caused by Gram-negative bacteria. Therefore, new strategies must be developed against these pathogens.
View Article and Find Full Text PDFBenzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate reagent (BOP) serves as an efficient and versatile coupling reagent for the design and synthesis of new polyamino geranic acid derivatives in moderate to good chemical yields varying from 47% to 83%. These compounds induced a significant decrease of antibiotic resistance in two Gram-negative bacterial MDR strains. Our data suggested that their mechanism of action is closely associated with the inhibition of the efflux pumps.
View Article and Find Full Text PDFNew series of acids and hydroxamic acids linked to five-membered heterocycles including furan, oxazole, 1,2,4- or 1,3,4-oxadiazole, and imidazole were synthesized and tested as inhibitors against the Fe(II) , Co(II) , and Mn(II) forms of E. coli methionine aminopeptidase (MetAP) and as antibacterial agents against wild-type and acrAB E. coli strains.
View Article and Find Full Text PDFObjectives: Bacterial drug resistance is a worrying public health problem and there is an urgent need for research and development to provide new antibacterial molecules. Peptide deformylase (PDF) is now a well-described intracellular target selected for the design of a new antibiotic group, PDF inhibitors (PDFIs). The initial bacterial susceptibility to an inhibitor of a cytoplasmic target is directly associated with the diffusion of the compound through the membrane barrier of Gram-negative bacteria and with its cytosolic accumulation at the required concentration.
View Article and Find Full Text PDF