Within the last decade, a wide variety of protocols have emerged for the generation of retinal organoids. A subset of studies have compared protocols based on stem cell source, the physical features of the microenvironment, and both internal and external signals, all features that influence embryoid body and retinal organoid formation. Most of these comparisons have focused on the effect of signaling pathways on retinal organoid development.
View Article and Find Full Text PDFX-linked juvenile retinoschisis (XLRS) is an early-onset progressive inherited retinopathy affecting males. It is characterized by abnormalities in the macula, with formation of cystoid retinal cavities, frequently accompanied by splitting of the retinal layers, impaired synaptic transmission of visual signals, and associated loss of visual acuity. XLRS is caused by loss-of-function mutations in the retinoschisin gene located on the X chromosome (, MIM 30083).
View Article and Find Full Text PDFIn the April issue of this Journal, Boffa and coworkers put forward a new therapeutic approach for Gyrate Atrophy of the Choroid and Retina (GACR; OMIM 258870) (Boffa et al, 2023). The authors propose to apply gene therapy to the liver for GACR, a metabolic disease primarily affecting eyesight due to retinal degeneration. Their vision is enthusiastically supported by a News and Views comment in the same issue (Seker Yilmaz and Gissen, 2023).
View Article and Find Full Text PDFPurpose: Albinism refers to a group of genetic disorders typically characterized by a loss/reduction of melanin in the hair, skin and eyes of affected patients. Apart from pigment changes, all albinism patients present with foveal hypoplasia and optic nerve misrouting, and have blurred vision. The molecular mechanisms that link this lack of pigment with neural retinal development are poorly understood, with foveal and optic tract development being difficult to model.
View Article and Find Full Text PDFImportance: Juvenile amyotrophic lateral sclerosis (ALS) is a rare form of ALS characterized by age of symptom onset less than 25 years and a variable presentation.
Objective: To identify the genetic variants associated with juvenile ALS.
Design, Setting, And Participants: In this multicenter family-based genetic study, trio whole-exome sequencing was performed to identify the disease-associated gene in a case series of unrelated patients diagnosed with juvenile ALS and severe growth retardation.