Publications by authors named "A L Van Wezel"

Water reuse is a viable option to address temporal or structural water shortages. However, the ubiquitous presence of chemicals of emerging concern (CECs) in natural systems, especially the aquatic environment, represents a significant obstacle to water reuse and the receiving environment. Therefore, an extensive literature review was performed to identify current water reuse practices at field scale, reported types and levels of CECs and their associated risks for human and environmental health.

View Article and Find Full Text PDF

Cytokines are involved in all stages of atherosclerosis, generally contributing to disease progression. Previously, members of the Interleukin (IL)-6 cytokine family, such as IL-6, oncostatin M, and cardiotrophin-1, have been extensively studied in atherosclerosis. However, the role of leukemia inhibitory factor (LIF), member of the IL-6 family, and its receptor (LIFR), remains to be further elucidated.

View Article and Find Full Text PDF

Despite the widespread presence of per- and polyfluoroalkyl substances (PFAS) in freshwater environments, only a few studies have addressed their bioaccumulation in macrophytes and benthic invertebrates. This study therefore aimed at investigating the presence of 40 PFAS in sediments, assessing their bioaccumulation in a rooting macrophyte () and a benthic invertebrate () and examining the effects of the presence and bioturbation activity of the invertebrate on PFAS bioaccumulation in the plants. The macrophytes were exposed to sediments originating from a reference and a PFAS-contaminated site.

View Article and Find Full Text PDF

Agroecology largely focusses on terrestrial agroecosystems, but it can also be applied to fish farming. Indeed, ponds are typically used for fish production in Europe, but are also important reservoirs of biodiversity. Numerous studies demonstrate that both fish production and biodiversity are strongly determined by human management.

View Article and Find Full Text PDF

Despite our growing awareness of micro-and nanoplastics presence in food and beverages, the fate of nanoplastics (NPs) in the human gastrointestinal tract (GIT) remains poorly investigated. Changes of nanoplastics size upon digestive conditions influence the potential of absorption through the intestine. In this study, polymer nanoparticles with different physicochemical properties (size, surface and chemistry) were submitted to gastrointestinal digestion (GID) simulated in vitro.

View Article and Find Full Text PDF