Bioprinting of nanohydroxyapatite (nHA)-based bioinks has attracted considerable interest in bone tissue engineering. However, the role and relevance of the physicochemical properties of nHA incorporated in a bioink, particularly in terms of its printability and the biological behavior of bioprinted cells, remain largely unexplored. In this study, two bioinspired nHAs with different chemical compositions, crystallinity, and morphologies were synthesized and characterized: a more crystalline, needle-like Mg-doped nHA (N-HA) and a more amorphous, rounded Mg- and CO-doped nHA (R-HA).
View Article and Find Full Text PDFA functional bioink with potential in bone tissue engineering must be subjected to critical investigation throughout its intended lifespan. The aim of this study was to develop alginate-gelatin-based (Alg-Gel) multicomponent bioinks systematically and to assess the short- and long-term exposure responses of human bone marrow stromal cells (hBMSCs) printed within these bioinks with and without crosslinking. The first generation of bioinks was established by incorporating a range of cellulose nanofibrils (CNFs), to evaluate their effect on viscosity, printability and cell viability.
View Article and Find Full Text PDFDistinctive molecular approaches and tools, particularly high-throughput SNP genotyping, have been applied to determine and discover SNPs, potential genes of interest, indicators of evolutionary selection, genetic abnormalities, molecular indicators, and loci associated with quantitative traits (QTLs) in various livestock species. These methods have also been used to obtain whole-genome sequencing (WGS) data, enabling the implementation of genomic selection. Genomic selection allows for selection decisions based on genomic-estimated breeding values (GEBV).
View Article and Find Full Text PDFDrug Des Devel Ther
December 2024
Purpose: Nitrofurantoin (NITRO), a long-standing antibiotic to treat urinary tract infections, is activated by Nitro reductases. This activation mechanism has led to its exploration for repositioning applications in controlling and treating breast cancer, which express a Nitro reductase gene.
Methods: NITRO Cubosomes were developed using hot homogenization according to 2-full factorial design.