Publications by authors named "A L Pisello"

Article Synopsis
  • Cerate nanoceramics are gaining attention for their potential in improving heat management and solar reflectance.
  • This study uses advanced calculations to show that LaCeO and AlCeO materials have excellent temperature stability, UV-vis/near-infrared reflectance, and customizable mid-infrared emissivity.
  • It also explores how defects and aluminum impurities in the materials can create unique environments for better infrared emission, which is useful for passive cooling technologies.
View Article and Find Full Text PDF

Mitigating Urban Heat Island (UHI) intensity in cities through adaptative strategies has become an urgent need, as UHI are also exacerbated by climate change impacts imputable to anthropogenic actions. This study addresses the need for reliable simulation models to analyze outdoor thermal comfort (OTC) in future or alternative scenarios. The aim of the present study is to contribute to the validation of CFD urban microclimate simulations by employing intra-urban canyon transects as an alternative or a complementary approach to fixed stations.

View Article and Find Full Text PDF

Outdoor environments extend living spaces as venues for various activities. Comfortable open public spaces can positively impact citizens' health and well-being, thereby improving the livability and resilience of cities. Considering the visitors' perception of these environments in comfort studies is crucial for ensuring their well-being and promoting the use of these spaces.

View Article and Find Full Text PDF

Urban Heat Island (UHI) is acknowledged to generate harmful consequences on human health, and it is one of the main anthropogenic challenges to face in modern cities. Due to the urban dynamic complexity, a full microclimate decoding is required to design tailored mitigation strategies for reducing heat-related vulnerability. This study proposes a new method to assess intra-urban microclimate variability by combining for the first time two dedicated monitoring systems consisting of fixed and mobile techniques.

View Article and Find Full Text PDF

In the framework of intense research about high-entropy materials and their applications in energy-oriented technologies, in the present work, we discuss the potential applicability of selected oxides and of the alloys they form at different concentrations for daytime radiative cooling implementation. In particular, by combining density functional theory and the finite difference method, we provide an unbiased, scattering-free description of structural, electronic, and dynamic features of the best candidates, showing the required strong radiative properties for passive cooling while offering the benefits of affordability and compatibility with commercial coating fabrication processes.

View Article and Find Full Text PDF