Recent experimental investigations on the reduction of internal quantum efficiency with increasing current density in (AlInGa)N quantum well structures show that Auger recombination is a significant contributor to the so-called "droop" phenomenon. Using photoluminescence (PL) test structures, we find Auger processes are responsible for at least 15 % of the measured efficiency droop. Furthermore, we confirm that electron-electron-hole (nnp) is stronger than electron-hole-hole (npp) Auger recombination in standard LEDs.
View Article and Find Full Text PDFA multidisciplinary, fragment-based screening approach involving protein ensemble docking and biochemical and NMR assays is described. This approach led to the discovery of several structurally diverse, neutral surrogates for cationic factor VIIa P1 groups, which are generally associated with poor pharmacokinetic (PK) properties. Among the novel factor VIIa inhibitory fragments identified were aryl halides, lactams, and heterocycles.
View Article and Find Full Text PDFInhibitors of the Tissue Factor/Factor VIIa (TF-FVIIa) complex are promising novel anticoagulants that show excellent efficacy and minimal bleeding in preclinical models. On the basis of a zwitterionic phenylglycine acylsulfonamide 1, a phenylglycine benzylamide 2 was shown to possess improved permeability and oral bioavailability. Optimization of the benzylamide, guided by X-ray crystallography, led to a potent TF-FVIIa inhibitor 18i with promising oral bioavailability, but promiscuous activity in an in vitro safety panel of receptors and enzymes.
View Article and Find Full Text PDFBioorg Med Chem Lett
September 2013
Aminoisoquinoline and isoquinoline groups have successfully replaced the more basic P1 benzamidine group of an acylsulfonamide factor VIIa inhibitor. Inhibitory activity was optimized by the identification of additional hydrophobic and hydrophilic P' binding interactions. The molecular details of these interactions were elucidated by X-ray crystallography and molecular modeling.
View Article and Find Full Text PDFIn mass rearing of anopheline mosquitoes, pupae are usually separated from larvae on a daily basis to prevent unwanted adult emergence from trays. Depending on the device and species, 2 physical characteristics have most often been used for separation: buoyant density and size. In this report, we describe a system for continuous separation of Anopheles arabiensis larvae from pupae based on the natural difference in buoyant density and behavior between the 2 stages.
View Article and Find Full Text PDF