Publications by authors named "A L Livingston"

Purpose: In cartilage research, three-dimensional (3D) culture models are pivotal for assessing chondrogenic differentiation potential. Standard pellet cultures, despite their utility, pose challenges like uneven differentiation and handling difficulties. This study explores the use of Matrigel, an extracellular matrix-based hydrogel, to encapsulate fibronectin adhesion assay-derived chondroprogenitors (FAA-CPs) and evaluate their chondrogenic differentiation potential.

View Article and Find Full Text PDF

PEGylation (the covalent attachment of one or more poly(ethylene glycol) (PEG) units to a therapeutic) is a well-established technique in the pharmaceutical industry to increase blood-residence time and decrease immunogenicity. A challenging aspect of PEGylation is the dispersity of PEGylation agents, which results in batch-to-batch variations and analytical limitations. Herein, we present an approach to overcome these limitations by manufacturing a defined molecular weight (dispersity-free) PEGylation agent.

View Article and Find Full Text PDF

Chondroprogenitor cells (CPCs), recently identified as a distinct subpopulation, exhibit promise due to their mesenchymal properties, heightened chondrogenesis, and limited hypertrophic traits. The enrichment of progenitors is achieved through differential fibronectin adhesion and migration-based explant assays, with Fibronectin Adhesion Assay-derived Chondroprogenitors (FAA-CPs) and Migratory Chondroprogenitors (MCPs) demonstrating superior potential compared to chondrocytes. This article delves into the details of isolating resident cartilage-derived cells, namely chondrocytes and chondroprogenitors.

View Article and Find Full Text PDF

Aim: Diabetic bladder dysfunction (DBD) is the most common diabetic complication. Patients present with overactive symptoms, underactive symptoms, or both. While strict glucose control may be expected to reverse DBD, prior studies have not been supportive.

View Article and Find Full Text PDF
Article Synopsis
  • The University of Maryland, Baltimore's CURE program connects high school students in West Baltimore with STEM enrichment and community health training through a virtual curriculum aimed at preparing them as community health workers.
  • A study conducted during the summer sessions of 2020 and 2021 revealed both successes and challenges, with scholars providing feedback on their experiences via surveys and qualitative interviews.
  • Key findings indicated that while students appreciated the program, they struggled with navigation of virtual assignments and expressed a desire for more interactive, hands-on activities, prompting plans for future programming improvements.
View Article and Find Full Text PDF