Publications by authors named "A L J Kneppers"

Through their myogenic activity, adult muscle stem cells (MuSCs) are crucial for the regeneration of striated skeletal muscle. Once activated, they proliferate, differentiate and then fuse to repair or form new muscle fibers (myofibers). Their progression through myogenesis requires a complex regulation involving multiple players such as metabolism, in particular via AMPK.

View Article and Find Full Text PDF

Serotonin reuptake inhibitor antidepressants such as fluoxetine are widely used to treat mood disorders. The mechanisms of action include an increase in extracellular level of serotonin, neurogenesis, and growth of vessels in the brain. We investigated whether fluoxetine could have broader peripheral regenerative properties.

View Article and Find Full Text PDF

Adult skeletal muscle stem cells (MuSC) are the regenerative precursors of myofibers and also have an important role in myofiber growth, adaptation, and maintenance by fusing to the myofibers-a process referred to as "myonuclear accretion." Due to a focus on MuSC function during regeneration, myofibers remain a largely overlooked component of the MuSC niche influencing MuSC fate. Here, we describe a method to directly measure the rate of myonuclear accretion in vitro and in vivo using ethynyl-2'-deoxyuridine (EdU)-based tracing of MuSC progeny.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on NUAK1, a kinase linked to autism, which plays a crucial role in axon branching by influencing how mitochondria are transported within neurons.
  • - Findings indicate that mitochondria help stabilize existing axonal branches rather than create new ones, and a lack of NUAK1 leads to decreased mitochondrial function and energy supply in neurons.
  • - The research suggests that NUAK1 regulates axon branching via the microprotein BRAWNIN, highlighting its dual role in managing mitochondrial distribution and metabolic activity.
View Article and Find Full Text PDF

Due to the post-mitotic nature of skeletal muscle fibers, adult muscle maintenance relies on dedicated muscle stem cells (MuSCs). In most physiological contexts, MuSCs support myofiber homeostasis by contributing to myonuclear accretion, which requires a coordination of cell-type specific events between the myofiber and MuSCs. Here, we addressed the role of the kinase AMPKα2 in the coordination of these events supporting myonuclear accretion.

View Article and Find Full Text PDF