Publications by authors named "A L Frischknecht"

Motivated by increasing interest in electrochemical devices that include highly alkaline electrolytes, we investigated two force fields for potassium hydroxide (KOH) at high concentrations in water. The "FNB" model uses the SPC/E water model, while the "FHM" model uses the water model. We also developed parameters to describe zincate ions in these solutions.

View Article and Find Full Text PDF

We develop a Stockmayer fluid model that accounts for the dielectric responses of polar solvents (water, MeOH, EtOH, acetone, 1-propanol, DMSO, and DMF) and NaCl solutions. These solvent molecules are represented by Lennard-Jones (LJ) spheres with permanent dipole moments and the ions by charged LJ spheres. The simulated dielectric constants of these liquids are comparable to experimental values, including the substantial decrease in the dielectric constant of water upon the addition of NaCl.

View Article and Find Full Text PDF

We perform all-atom molecular dynamics simulations of lithium triflate in 1,2-dimethoxyethane using six different literature force fields. This system is representative of many experimental studies of lithium salts in solvents and polymers. We show that multiple historically common force fields for lithium ions give qualitatively incorrect results when compared with those from experiments and quantum chemistry calculations.

View Article and Find Full Text PDF

In polymer nanoparticle composites (PNCs) with attractive interactions between nanoparticles (NPs) and polymers, a bound layer of the polymer forms on the NP surface, with significant effects on the macroscopic properties of the PNCs. The adsorption and wetting behaviors of polymer solutions in the presence of a solid surface are critical to the fabrication process of PNCs. In this study, we use both classical density functional theory (cDFT) and molecular dynamics (MD) simulations to study dilute and semi-dilute solutions of short polymer chains near a solid surface.

View Article and Find Full Text PDF

Dehydration beyond 2% bodyweight loss should be monitored to reduce the risk of heat-related injuries during exercise. However, assessments of hydration in athletic settings can be limited in their accuracy and accessibility. In this study, we sought to develop a data-driven noninvasive approach to measure hydration status, leveraging wearable sensors and normal orthostatic movements.

View Article and Find Full Text PDF