Primary immune thrombocytopenia (ITP) is an autoimmune disease characterized by pathogenic immunoglobulin G (IgG) autoantibodies that bind to platelets, causing their phagocytic removal and leading to reductions in platelet number. The neonatal Fc receptor (FcRn) selectively salvages and recycles IgG, including pathogenic IgG, thereby extending the half-life of IgG in plasma. Two anti-mouse FcRn monoclonal antibodies (mAb) (4470 and 4464) were generated to evaluate the effect of inhibiting IgG recycling.
View Article and Find Full Text PDFAutoantibody-mediated diseases are currently treated with intravenous immunoglobulin, which is thought to act in part via blockade of Fc gamma receptors, thereby inhibiting autoantibody effector functions and subsequent pathology. We aimed to develop recombinant molecules with enhanced Fc receptor avidity and thus increased potency over intravenous immunoglobulin. Here we describe the molecular engineering of human Fc hexamers and explore their therapeutic and safety profiles.
View Article and Find Full Text PDFEngagement of Fcγ-receptors triggers a range of downstream signalling events resulting in a diverse array of immune functions. As a result, blockade of Fc-mediated function is an important strategy for the control of several autoimmune and inflammatory conditions. We have generated a hexameric-Fc fusion protein (hexameric-Fc) and tested the consequences of multi-valent Fcγ-receptor engagement in in vitro and in vivo systems.
View Article and Find Full Text PDFObjective: Exposure to supraphysiologic levels of glucocorticoid drugs is known to have detrimental effects on bone formation and linear growth. Patients with sclerosteosis lack the bone regulatory protein sclerostin, have excessive bone formation, and are typically above average in height. This study was undertaken to characterize the effects of a monoclonal antibody to sclerostin (Scl-AbI) in mice exposed to dexamethasone (DEX).
View Article and Find Full Text PDFChronic inflammation leads to bone loss, and increased fracture rates have been reported in a number of human chronic inflammatory conditions. The study reported here investigates the skeletal effects of dosing a neutralizing antibody to the bone regulatory protein sclerostin in a mouse model of chronic colitis. When dosed prophylactically, an antibody to sclerostin (Scl-AbI) did not reduce the weight loss or histological changes associated with colitis but did prevent inflammation-induced bone loss.
View Article and Find Full Text PDF