Publications by authors named "A L DeVico"

Anti-HIV envelope broadly neutralizing antibodies (bnAbs) are alternatives to conventional antiretrovirals with the potential to prevent and treat infection, reduce latent reservoirs, and/or mediate a functional cure. Clinical trials with "first generation" bnAbs used alone or in combination show promising antiviral effects but also highlight that additional engineering of "enhanced" antibodies will be required for optimal clinical utility, while preserving or enhancing cGMP manufacturing capability. Here we report the engineering of an anti-CD4 binding-site (CD4bs) bnAb, N49P9.

View Article and Find Full Text PDF

Efforts to develop vaccine and immunotherapeutic countermeasures against the COVID-19 pandemic focus on targeting the trimeric spike (S) proteins of SARS-CoV-2. Vaccines and therapeutic design strategies must impart the characteristics of virion S from historical and emerging variants onto practical constructs such as soluble, stabilized trimers. The virus spike is a heterotrimer of two subunits: S1, which includes the receptor binding domain (RBD) that binds the cell surface receptor ACE2, and S2, which mediates membrane fusion.

View Article and Find Full Text PDF

Antibody-mediated effector functions are widely considered to unfold according to an associative model of IgG-Fcγ receptor (FcγR) interactions. The associative model presupposes that Fc receptors cannot discriminate antigen-bound IgG from free IgG in solution and have equivalent affinities for each. Therefore, the clustering of Fcγ receptors (FcγR) in the cell membrane, cross-activation of intracellular signaling domains, and the formation of the immune synapse are all the result of avid interactions between the Fc region of IgG and FcγRs that collectively overcome the individually weak, transient interactions between binding partners.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) is the most fatal non-AIDS defining cancer in people living with HIV (PWH) on antiretroviral therapy (ART). Treatment of malignancies in PWH requires concomitant cancer therapy and ART, which can lead to potential drug-drug interactions (DDIs) and overlapping toxicities. In this study, we hypothesize that replacement of ART with HIV broadly neutralizing antibodies (bNAbs) during cancer chemotherapy (chemo) may maintain HIV suppression and tumor inhibition while minimizing DDIs and overlapping toxicities.

View Article and Find Full Text PDF

Background: The chemokine receptor CCR5 is the major coreceptor for HIV-1 cell entry. We previously observed that not all CCR5 mAbs reduce HIV-1 infection, suggesting that only some CCR5 populations are permissive for HIV-1 entry. This study aims to better understand the relevant conformational states of the cellular coreceptor, CCR5, involved in HIV entry.

View Article and Find Full Text PDF