Phosphorylation of substrates by cyclin-dependent kinases (CDKs) is the driving force of cell cycle progression. Several CDK-activating cyclins are involved, yet how they contribute to substrate specificity is still poorly understood. Here, we discover that a positively charged pocket in cyclin B1, which is exclusively conserved within B-type cyclins and binds phosphorylated serine- or threonine-residues, is essential for correct execution of mitosis.
View Article and Find Full Text PDFArterial cannulation, commonly performed in the radial artery, is a widely used method for continuous blood pressure monitoring. Occasionally, the axillary artery is used as an alternate site of cannulation. However, complications like occlusion can lead to adverse events and severe outcomes.
View Article and Find Full Text PDFTo ensure the correct euploid state of embryos, it is essential that vertebrate oocytes await fertilization arrested at metaphase of meiosis II. This MII arrest is mediated by XErp1/Emi2, which inhibits the ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome). Cyclin B3 in complex with Cdk1 (cyclin-dependent kinase 1) is essential to prevent an untimely arrest of vertebrate oocytes in meiosis I by targeting XErp1/Emi2 for degradation.
View Article and Find Full Text PDFVenous thromboembolism (VT) is a frequent (annual incidence of 1 to 2 per 1,000) and potentially life-threatening (case-fatality rate up to 10%) disease. VT is associated with serious short-term and long-term complications including a recurrence rate of approximately 20% within five years. Anticoagulant therapy, the mainstay of VT treatment, drastically reduces the risk of early VT recurrence, but it exposes patients to a substantial risk of bleeding.
View Article and Find Full Text PDF