Radioresistant tumours remain complex to manage with current radiotherapy (RT) techniques. Heavy ion beams were proposed for their treatment given their advantageous radiobiological properties. However, previous studies with patients resulted in serious adverse effects in the surrounding healthy tissues.
View Article and Find Full Text PDFThe biology underlying proton minibeam radiation therapy (pMBRT) is not fully understood. Here we aim to elucidate the biological effects of pMBRT using Fourier Transform Infrared Microspectroscopy (FTIRM). In vitro (CTX-TNA2 astrocytes and F98 glioma rat cell lines) and in vivo (healthy and F98-bearing Fischer rats) irradiations were conducted, with conventional proton radiotherapy and pMBRT.
View Article and Find Full Text PDFPurpose: Proton minibeam radiation therapy (pMBRT) is an innovative radiation therapy approach that highly modulates the spatial dimension of the dose delivery using narrow, parallel, and submillimetric proton beamlets. pMBRT has proven its remarkable healthy tissue preservation in the brain and skin. This study assesses the potential advantages of pMBRT for thoracic irradiations compared with conventional radiation therapy in terms of normal tissue toxicity.
View Article and Find Full Text PDFMicroorganisms
March 2024
Cutaneous leishmaniasis is a neglected tropical disease caused, in Brazil, mainly by , which is a protozoan transmitted during the blood feeding of infected female sandflies. To control leishmaniasis, the participation of CD4 Th1 cells together with macrophages, neutrophils, and other peripheral blood cells, including platelets, is necessary. These anuclear fragments, when activated, produce microvesicles (MVs) that can reach locations outside the blood, carrying molecules responsible for activating pro-inflammatory responses and antigen presentation.
View Article and Find Full Text PDFBackground: Radiation-induced neurocognitive dysfunction is a major adverse effect of brain radiation therapy and has specific relevance in pediatric oncology, where serious cognitive deficits have been reported in survivors of pediatric brain tumors. Moreover, many pediatric patients receive proton therapy under general anesthesia or sedation to guarantee precise ballistics with a high oxygen content for safety. The present study addresses the relevant question of the potential effect of supplemental oxygen administered during anesthesia on normal tissue toxicity and investigates the anti-tumor immune response generated following conventional and FLASH proton therapy.
View Article and Find Full Text PDF