Vesicle Amine Transport-1 (VAT1) is a protein that is overexpressed in many cancers, including breast cancer, glioblastoma, and angiosarcoma. High VAT1 expression correlates with poor overall survival, and genetic knockout models of VAT1 indicate potent antimigratory activity, suggesting that VAT1 is a promising antimetastasis target. Recently, the natural product neocarzilin A (NCA) from was reported to be the first validated small-molecule inhibitor of VAT1, having strong activity in metastasis models of angiosarcoma and breast cancer.
View Article and Find Full Text PDFBackground: Direct skeletal fixation, a surgical technique enabling the attachment of an external prosthesis directly to the bone through a percutaneous implant, offers an enticing solution for patients with lower limb amputations facing socket-related issues. However, understanding of its impact on musculoskeletal function remains limited.
Methods: This study compares pre- and 1-year post-osseointegration surgery outcomes, focusing on patient-reported measures and musculoskeletal system function during level-ground walking.
Individuals with transfemoral lower limb amputations walk with adapted gait. These kinetic and kinematic compensatory strategies will manifest as differences in muscle recruitment patterns. It is important to characterize these differences to understand the reduced endurance, reduced functionality, and progression of co-morbidities in this population.
View Article and Find Full Text PDFAngiosarcoma is a cancer that develops in blood or lymphatic vessels that presents a significant clinical challenge due to its rarity and aggressive features. Clinical outcomes have not improved in decades, highlighting a need for innovative therapeutic strategies to treat the disease. Genetically, angiosarcomas exhibit high heterogeneity and complexity with many recurrent mutations.
View Article and Find Full Text PDF