Publications by authors named "A Kurimasa"

Patients with neurological diseases, such as schizophrenia, tend to show low K-Cl co-transporter 2 (KCC2) levels in the brain. The cause of these diseases has been associated with stress and neuroinflammation. However, since the pathogenesis of these diseases is not yet fully investigated, drug therapy is still limited to symptomatic therapy.

View Article and Find Full Text PDF

To understand the molecular mechanisms responsible for radioresistance in cancer cells, we previously established clinically relevant radioresistant (CRR) cell lines from several human cancer cell lines. These CRR cells proliferate even under exposure to 2 Gy/day of X-rays for more than 30 days, which is a standard protocol for tumor radiotherapy. CRR cells received 2 Gy/day of X-rays to maintain their radioresistance (maintenance irradiation; MI).

View Article and Find Full Text PDF

Auger electrons can induce nanoscale physiochemical damage to DNA. The present study reports a sequential and systematic evaluation of the relationship between DNA damage such as double-strand breaks (DSBs) and the cell cycle for the Auger electron-emitting agent radiolabeled cisplatin with DNA binding ability. For dynamic imaging analysis, we used U2OS-derived cancer cells expressing two fluorescent fusion proteins: tumor-suppressor p53 binding protein 1 with a green fluorescent protein (53BP1-EGFP) and proliferating cell nuclear antigen with a red fluorescent protein (PCNA-DsRed).

View Article and Find Full Text PDF

Cranial radiation therapy (CRT) is an effective treatment for brain tumors; however, it also causes brain injuries. The pediatric brain is considered especially vulnerable compared to the adult brain; thus, brain injuries caused by CRT may severely affect their quality of life. In this study, we determined the neuroprotective effects of nasal oxytocin administration following cranial radiation in mice.

View Article and Find Full Text PDF

This study aims to establish new labeling methods for no-carrier-added radio-Pt (Pt) and to evaluate the in vitro properties of Pt-labeled agents compared with those of agents labeled with the common emitter In. Pt was complexed with the DNA-targeting dye Hoechst33258 via diethylenetriaminepentaacetic acid (DTPA) or the sulfur-containing amino acid cysteine (Cys). The intranuclear fractions of Pt- and In-labeled Hoechst33258 were comparable, indicating that the labeling for Pt via DTPA or Cys and the labeling for In via DTPA worked equally well.

View Article and Find Full Text PDF