Publications by authors named "A Kuechler"

While mostly de novo truncating variants in SCAF4 were recently identified in 18 individuals with variable neurodevelopmental phenotypes, knowledge on the molecular and clinical spectrum is still limited. We assembled data on 50 novel individuals with SCAF4 variants ascertained via GeneMatcher and personal communication. With detailed evaluation of clinical data, in silico predictions and structural modeling, we further characterized the molecular and clinical spectrum of the autosomal dominant SCAF4-associated neurodevelopmental disorder.

View Article and Find Full Text PDF

Introduction: Congenital anomalies of the kidney and urinary tract (CAKUT) represent the most common cause of chronic kidney disease in children. Although only 20% of cases can be genetically explained, the majority remain without an identified underlying etiology. The neurodevelopmental disorder Chung-Jansen syndrome (CHUJANS) is caused by haploinsufficiency of Pleckstrin homology domain-interacting protein (PHIP) and was previously associated with genital malformations.

View Article and Find Full Text PDF
Article Synopsis
  • * A 3-year study, TRANSLATE NAMSE, analyzed data from 1,577 patients, revealing that 32% received molecular diagnoses involving 370 distinct causes, primarily uncommon.
  • * The research showed that combining next-generation sequencing with advanced phenotyping methods improved diagnostic efficiency and helped identify new genotype-phenotype associations, particularly in neurodevelopmental disorders.
View Article and Find Full Text PDF

The shift to a genotype-first approach in genetic diagnostics has revolutionized our understanding of neurodevelopmental disorders, expanding both their molecular and phenotypic spectra. Kleefstra syndrome (KLEFS1) is caused by EHMT1 haploinsufficiency and exhibits broad clinical manifestations. EHMT1 encodes euchromatic histone methyltransferase-1-a pivotal component of the epigenetic machinery.

View Article and Find Full Text PDF
Article Synopsis
  • * The study identifies RNU4-2, a non-coding RNA gene, as a significant contributor to syndromic NDD, revealing a specific 18-base pair region with low variation that includes variants found in 115 individuals with NDD.
  • * RNU4-2 is highly expressed in the developing brain, and its variants disrupt splicing processes, indicating that non-coding genes play a crucial role in rare disorders, potentially aiding in the diagnosis of thousands with NDD worldwide.
View Article and Find Full Text PDF