Background: Worldwide, Escherichia coli is the leading cause of neonatal Gram-negative bacterial meningitis, but full understanding of the pathogenesis of this disease is not yet achieved. Moreover, to date, no vaccine is available against bacterial neonatal meningitis.
Methods: Here, we used Transposon Sequencing of saturated banks of mutants (TnSeq) to evaluate E.
For many gram-positive pathogens, conjugative plasmid transfer is an important means of spreading antibiotic resistance . Therefore, the search for alternative treatments to fight and prevent infections caused by these bacteria has become of major interest. In the present study, we evaluated the protein TraM, from the conjugative plasmid pIP501, as a potential vaccine candidate.
View Article and Find Full Text PDFMultiresistant nosocomial pathogens often cause life-threatening infections that are sometimes untreatable with currently available antibiotics. Staphylococci and enterococci are the predominant Gram-positive species associated with hospital-acquired infections. These infections often lead to extended hospital stay and excess mortality.
View Article and Find Full Text PDFPurpose: We compared different immunoglobulin preparations containing IgG (Intraglobin/Intratect) or a mixture of IgG, IgA, and IgM (Pentaglobin) to assess the opsonic and protective efficacy of human immunoglobulin preparations against multiresistent nosocomial pathogens.
Materials And Methods: Clinical isolates of E. coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Enterococcus faecium, and Staphylococcus aureus were tested by opsonophagocytic assay using immunologobulin preparations at dilutions usually obtained in patients.
Lipoteichoic acids (LTA) are amphiphilic polymers that are important constituents of the cell wall of many Gram-positive bacteria. The chemical structures of LTA vary among organisms, albeit in the majority of Gram-positive bacteria the LTAs feature a common poly-1,3-(glycerolphosphate) backbone. Previously, the specificity of opsonic antibodies for this backbone present in some Gram-positive bacteria has been demonstrated, suggesting that this minimal structure may be sufficient for vaccine development.
View Article and Find Full Text PDF