We study the transport properties of mm-scale CVD graphene p-n junctions, which are formed in a single gated graphene field effect transistor configuration. Here, an electrical-stressing-voltage technique served to modify the electrostatic potential in the SiO/Si substrate and create the p-n junction. We examine the transport characteristics about the Dirac points that are localized in the perturbed and unperturbed regions in the graphene channel and note the quantitative differences in the Hall effect between the perturbed and unperturbed regions.
View Article and Find Full Text PDFTwo-dimensional electron systems subjected to high transverse magnetic fields can exhibit Fractional Quantum Hall Effects (FQHE). In the GaAs/AlGaAs 2D electron system, a double degeneracy of Landau levels due to electron-spin, is removed by a small Zeeman spin splitting, [Formula: see text], comparable to the correlation energy. Then, a change of the Zeeman splitting relative to the correlation energy can lead to a re-ordering between spin polarized, partially polarized, and unpolarized many body ground states at a constant filling factor.
View Article and Find Full Text PDFA metallic state with a vanishing activation gap, at a filling factor [Formula: see text] in the untilted specimen with [Formula: see text], and at [Formula: see text] at [Formula: see text] under a [Formula: see text] tilted magnetic field, is examined through a microwave photo-excited transport study of the GaAs/AlGaAs 2 dimensional electron system (2DES). The results presented here suggest, remarkably, that at the possible degeneracy point of states with different spin polarization, where the 8/5 or 4/3 FQHE vanish, there occurs a peculiar marginal metallic state that differs qualitatively from a quantum Hall insulating state and the usual quantum Hall metallic state. Such a marginal metallic state occurs most prominently at [Formula: see text], and at [Formula: see text] under tilt as mentioned above, over the interval [Formula: see text], that also includes the [Formula: see text] state, which appears perceptibly gapped in the first instance.
View Article and Find Full Text PDFThe microwave-induced change in the narrow negative magnetoresistance effect that appears around zero magnetic field in high mobility GaAs/AlGaAs 2DES (≈10 cm/Vs) is experimentally examined as a function of incident microwave power at a fixed bath temperature. The experimental results indicate that the narrow negative magnetoresistance effect exhibits substantially increased broadening with increasing microwave intensity. These magnetoresistance data were subjected to lineshape fits to extract possible variation of characteristic lengths with microwave intensity; the results suggest that characteristic lengths decrease by up to 50% upon increasing microwave power up to about 8 mW.
View Article and Find Full Text PDFWe examine the characteristics of the microwave/mm-wave/terahertz radiation-induced magnetoresistance oscillations in monolayer and bilayer graphene and report that the oscillation frequency of the radiation-induced magnetoresistance oscillations in the massless, linearly dispersed monolayer graphene system should depend strongly both on the Fermi energy, and the radiation frequency, unlike in the case of the massive, parabolic, GaAs/AlGaAs 2D electron system, where the radiation-induced magnetoresistance oscillation frequency depends mainly on the radiation frequency. This possible dependence of the magnetoresistance oscillation frequency on the Fermi level at a fixed radiation frequency also suggests a sensitivity to the gate voltage in gated graphene, which suggests an in-situ tunable photo-excitation response in monolayer graphene that could be useful for sensing applications. In sharp contrast to monolayer graphene, bilayer graphene is expected to show radiation-induced magnetoresistance oscillations more similar to the results observed in the GaAs/AlGaAs 2D system.
View Article and Find Full Text PDF