We report on a mid-infrared resonant cavity light emitting diode (RCLED) operating at the wavelength of 4.5 µm with a narrow spectral linewidth at room temperature. Compared to a reference LED without a resonant cavity, our RCLED exhibits (85x) higher peak intensity, (13x) higher integrated output power, (16x) narrower spectral linewidth and (7x) superior temperature stability.
View Article and Find Full Text PDFSub-monolayer (SML) deposition of InSb within InAs matrix by migration enhanced epitaxy tends to form type II SML nanostructures offering efficient light emission within the mid-infrared (MIR) range between 3 and 5 μm. In this work, we report on the Sb distribution in InSb/InAs SML nanostructures with InAs cap layers grown at temperatures lower than that associated with the under-grown InSb active layer. Analysis by transmission electron microscopy (TEM) in 002 dark field conditions shows that the reduction in the growth temperature of the InAs cap layer increases the amount of Sb deposited in the layers, in good agreement with the x-ray diffraction results.
View Article and Find Full Text PDFInSb/InAs sub-monolayer (SML) nanostructures such as SML quantum dots offer sharper emission spectra, a better modal gain and a larger modulation bandwidth compared to its Stranski-Krastanov counterpart. In this work, the Sb distribution of SML InSb layers grown by migration enhanced epitaxy has been analyzed by transmission electron microscopy (TEM) techniques. The analysis of the material by diffraction contrast in 002 dark field conditions and by atomic column resolved high angle annular dark field-scanning TEM reveal the presence of a low Sb content InSbAs continuous layer with scarce Sb-rich InSbAs agglomerates.
View Article and Find Full Text PDFThe GaInAsSb material has been conventionally grown on lattice-matched GaSb substrates. In this work, we transplanted this material onto the GaAs substrates in molecular beam epitaxy (MBE). The threading dislocations (TDs) originating from the large lattice mismatch were efficiently suppressed by a novel metamorphic buffer layer design, which included the interfacial misfit (IMF) arrays at the GaSb/GaAs interface and strained GaInSb/GaSb multi-quantum wells (MQWs) acting as dislocation filtering layers (DFLs).
View Article and Find Full Text PDFThere is considerable interest in the development of InAsSb-based nanowires for infrared photonics due to their high tunability across the infrared spectral range, high mobility, and integration with silicon electronics. However, optical emission is currently limited to low temperatures due to strong nonradiative Auger and surface recombination. Here, we present a new structure based on conical type II InAsSb/InAs multiquantum wells within InAs nanowires which exhibit bright mid-infrared photoluminescence up to room temperature.
View Article and Find Full Text PDF