This study presents, for the first time, the comparison of behavior between two commonly found plant species, their extracts, and their major constituents (glucose and sucrose constituting over 70% of their dried extract) to synthesize zinc oxide (ZnO) nanoparticles (NPs) from zinc nitrate hexahydrate. The findings underscore the critical role of sugars as key constituents in facilitating this synthesis. This research demonstrates that the process can occur at relatively low temperatures (120°C).
View Article and Find Full Text PDFThis contribution reports, for the first time, on an entirely green bio-engineering approach for the biosynthesis of single phase crystalline 1-D nano-scaled calcite CaCO. This was validated using HO as the universal solvent and natural extract of Hyphaene thebaica fruit as an effective chelating agent. In this room temperature green process, CaCl and CO are used as the unique source of Ca and CO respectively in view of forming nano-scaled CaCO with a significant shape anisotropy and an elevated surface to volume ratio.
View Article and Find Full Text PDFRecent assessments alarmingly indicate that many of the world's leading chemicals are transgressing one or more of the nine planetary boundaries, which define safe operating spaces within which humanity can continue to develop and thrive for generations to come. The unfolding crisis cannot be ignored and there is a once-in-a-century opportunity for chemistry - the science of transformation of matter - to make a critical difference to the future of people and planet. How can chemists contribute to meeting these challenges and restore stability and strengthen resilience to the planetary system that humanity needs for its survival? To respond to the wake-up call, three crucial steps are outlined: (1) urgently working to understand the nature of the looming threats, from a chemistry perspective; (2) harnessing the ingenuity and innovation that are central to the practice of chemistry to develop sustainable solutions; and (3) transforming chemistry itself, in education, research and industry, to re-position it as 'chemistry for sustainability' and lead the stewardship of the world's chemical resources.
View Article and Find Full Text PDFMolecular catalysis for selective CO electroreduction into CO can be achieved with a variety of metal complexes. Their immobilization on cathodes is required for their practical implementation in electrolytic cells and can benefit from the advantages of a solid material such as easy separation of products and catalysts, efficient electron transfer to the catalyst, and high stability. However, this approach remains insufficiently explored up to now.
View Article and Find Full Text PDF