Publications by authors named "A Koulakoff"

As the most abundant gap junction protein in the central nervous system (CNS), astrocytic connexin 43 (Cx43) maintains astrocyte network homeostasis, affects oligodendroglial development and participates in CNS pathologies as well as injury progression. However, its role in remyelination is not yet fully understood. To address this issue, we used astrocyte-specific Cx43 conditional knockout (Cx43 cKO) mice generated through the use of a hGFAP-cre promoter, in combination with mice carrying a floxed Cx43 allele that were subjected to lysolecithin so as to induce demyelination.

View Article and Find Full Text PDF

The precise contribution of astrocytes in neuroinflammatory process occurring in Parkinson's disease (PD) is not well characterized. In this study, using GR mice that are conditionally inactivated for glucocorticoid receptor (GR) in astrocytes, we have examined the actions of astrocytic GR during dopamine neuron (DN) degeneration triggered by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The results show significantly augmented DN loss in GR mutant mice in substantia nigra (SN) compared to controls.

View Article and Find Full Text PDF

Intercellular communication through gap junction channels plays a key role in cellular homeostasis and in synchronizing physiological functions, a feature that is modified in number of pathological situations. In the brain, astrocytes are the cell population that expresses the highest amount of gap junction proteins, named connexins. Several techniques have been used to assess the level of gap junctional communication in astrocytes, but so far they remain very difficult to apply in adult brain tissue.

View Article and Find Full Text PDF

The non-receptor tyrosine kinase c-Src is an important mediator in several signaling pathways related to neuroinflammation. Our previous study showed that cortical injection of kainic acid (KA) promoted a transient increase in c-Src activity in reactive astrocytes surrounding the neuronal lesion. As a cell-penetrating peptide based on connexin43 (Cx43), specifically TAT-Cx43, inhibits Src activity, we investigated the effect of TAT-Cx43 on neuronal death promoted by cortical KA injections in adult mice.

View Article and Find Full Text PDF

Background: In Alzheimer's disease (AD), modification of astrocytic properties is a well-known and documented fact, but their involvement in pathophysiology has only been examined in recent years. One distinct hallmark of AD is reactive gliosis which are represented in microglial and astrocytic phenotype changes. This reactive gliosis has been associated with changes in the expression and function of connexins.

View Article and Find Full Text PDF