Publications by authors named "A Korngreen"

Voltage-gated sodium channels (Nav) are key players in excitable tissues with the capability to generate and propagate action potentials. Mutations in the genes encoding Navs can lead to severe inherited diseases, and some of these so-called channelopathies show temperature-sensitive phenotypes, for example, paramyotonia congenita, Brugada syndrome, febrile seizure syndromes, and inherited pain syndromes like erythromelalgia (IEM) and paroxysmal extreme pain disorder (PEPD). Nevertheless, most investigations of mutation-induced gating effects have been conducted at room temperature, and thus the role of cooling or warming in channelopathies remains poorly understood.

View Article and Find Full Text PDF

To understand single neuron computation, it is necessary to know how specific physiological parameters affect neural spiking patterns that emerge in response to specific stimuli. Here we present a computational pipeline combining biophysical and statistical models that provides a link between variation in functional ion channel expression and changes in single neuron stimulus encoding. More specifically, we create a mapping from biophysical model parameters to stimulus encoding statistical model parameters.

View Article and Find Full Text PDF

Like all biological and chemical reactions, ion channel kinetics are highly sensitive to changes in temperature. Therefore, it is prudent to investigate channel dynamics at physiological temperatures. However, most ion channel investigations are performed at room temperature due to practical considerations, such as recording stability and technical limitations.

View Article and Find Full Text PDF

Background: The membrane potential of individual neurons depends on a large number of interacting biophysical processes operating on spatial-temporal scales spanning several orders of magnitude. The multi-scale nature of these processes dictates that accurate prediction of membrane potentials in specific neurons requires the utilization of detailed simulations. Unfortunately, constraining parameters within biologically detailed neuron models can be difficult, leading to poor model fits.

View Article and Find Full Text PDF

The entopeduncular nucleus is one of the basal ganglia's output nuclei, thereby controlling basal ganglia information processing. Entopeduncular nucleus neurons integrate GABAergic inputs from the Striatum and the globus pallidus, together with glutamatergic inputs from the subthalamic nucleus. We show that endocannabinoids and dopamine interact to modulate the long-term plasticity of all these primary afferents to the entopeduncular nucleus.

View Article and Find Full Text PDF