Influenza A virions are highly pleomorphic, exhibiting either spherical or filamentous morphology. The influenza A virus strain A/Udorn/72 (H3N2) produces copious amounts of long filaments on the surface of infected cells where matrix protein 1 (M1) and 2 (M2) play a key role in virus filament formation. Previously, it was shown that an anti-M2 ectodomain (M2e) antibody could inhibit A/Udorn/72 virus filament formation.
View Article and Find Full Text PDFInfluenza represents a global public health threat. Currently available influenza vaccines are effective against strain-matched influenza A and B viruses but do not protect against novel pandemic viruses. Vaccine candidates that target conserved B or T cell epitopes of influenza viruses could circumvent this shortcoming.
View Article and Find Full Text PDFMatrix protein 2 ectodomain (M2e) is considered an attractive component of a broadly protective, universal influenza A vaccine. Here we challenge the canonical view that antibodies against M2e are the prime effectors of protection. Intranasal immunizations of Balb/c mice with CTA1-3M2e-DD-generated M2e-specific memory CD4 T cells that were I-A restricted and critically protected against infection, even in the complete absence of antibodies, as observed in JhD mice.
View Article and Find Full Text PDFThe ectodomain of matrix protein 2 is a universal influenza A virus vaccine candidate that provides protection through antibody-dependent effector mechanisms. Here we compared the functional engagement of Fcγ receptor (FcγR) family members by two M2e-specific monoclonal antibodies (MAbs), MAb 37 (IgG1) and MAb 65 (IgG2a), which recognize a similar epitope in M2e with similar affinities. The binding of MAb 65 to influenza A virus-infected cells triggered all three activating mouse Fcγ receptors , whereas MAb 37 activated only FcγRIII.
View Article and Find Full Text PDFThe antiviral myxovirus resistance protein 1 (MX1) is an interferon-induced GTPase that plays an important role in the defense of mammalian cells against influenza A viruses. Mouse MX1 interacts with the influenza ribonucleoprotein complexes (vRNPs) and can prevent the interaction between polymerase basic 2 (PB2) and the nucleoprotein (NP) of influenza A viruses. However, it is unclear whether mouse MX1 disrupts the PB2-NP interaction in the context of pre-existing vRNPs or prevents the assembly of new vRNP components.
View Article and Find Full Text PDF