Large scale radiological emergencies require high throughput techniques of biological dosimetry for population triage in order to identify individuals indicated for medical treatment. The dicentric assay is the "gold standard" technique for the performance of biological dosimetry, but it is very time consuming and needs well trained scorers. To increase the throughput of blood samples, semi-automation of dicentric scoring was investigated in the framework of the MULTIBIODOSE EU FP7 project, and dose effect curves were established in six biodosimetry laboratories.
View Article and Find Full Text PDFRadiation sensitivity at low and high dose exposure to X-rays was investigated by means of chromosomal aberration (CA) analysis in heterozygous ATM mutation carrier and A-T patient (biallelic ATM mutation) lymphoblastoid cell lines (LCLs). Targeted and non-targeted responses to acutely delivered irradiation were examined by applying a co-culture system that enables study of both directly irradiated cells and medium-mediated bystander effects in the same experimental setting. No indication of radiation hypersensitivity was observed at doses of 0.
View Article and Find Full Text PDFMass casualty scenarios of radiation exposure require high throughput biological dosimetry techniques for population triage in order to rapidly identify individuals who require clinical treatment. The manual dicentric assay is a highly suitable technique, but it is also very time consuming and requires well trained scorers. In the framework of the MULTIBIODOSE EU FP7 project, semi-automated dicentric scoring has been established in six European biodosimetry laboratories.
View Article and Find Full Text PDFAim: To identify linear peptide homing to non-small cell lung cancer (NSCLC) tumor cells using ex vivo phage display method.
Materials And Methods: Twenty-six clinical patient samples were used to identify linear homing peptide, which was exposed to NSCLC cell cultures and control cell lines to determine cell binding affinity and cell localization. Also, ex vivo biodistribution was analyzed using tumor-bearing mice.
In studies reported in the 1960s and in several investigations since, plasma from irradiated individuals was shown to induce chromosomal aberrations when transferred into normal blood cultures. In the present study, the aim was to investigate the occurrence of these clastogenic factors (CF) using markers representing DNA damage produced in reporter lymphocytes that are treated with plasma from locally exposed individuals. Blood plasma was obtained from clinical patients with benign conditions before and after they had received radiation to small treatment volumes.
View Article and Find Full Text PDF