Publications by authors named "A Kohvakka"

While hundreds of cancer-associated long noncoding RNAs (lncRNAs) have been discovered, their functional role in cancer cells is still largely a mystery. An increasing number of lncRNAs are recognized to function in the cytoplasm, e.g.

View Article and Find Full Text PDF

Prostate cancer (PCa) is the second-most common cause of male cancer-related death in western industrialized countries, and the emergence of metastases is a key challenge in the treatment of PCa. Accumulating studies have shown that long noncoding RNAs (lncRNAs) play an important role in the regulation of diverse cellular and molecular processes during the development and progression of cancer. Here, we utilized a unique cohort of castration-resistant prostate cancer metastases (mCRPC) and corresponding localized tumors and RNA sequencing (RNA-seq).

View Article and Find Full Text PDF

The three oncogenic PIM family kinases have been implicated in the development of prostate cancer (PCa). The aim of this study was to examine the mRNA and protein expression levels of PIM1, PIM2, and PIM3 in PCa and their associations with the MYC and ERG oncogenes. We utilized prostate tissue specimens of normal, benign prostatic hyperplasia (BPH), prostatic intraepithelial neoplasia (PIN), untreated PCa, and castration-resistant prostate cancer (CRPC) for immunohistochemical (IHC) analysis.

View Article and Find Full Text PDF

Long noncoding RNAs (lncRNAs) play pivotal roles in cancer development and progression, and some function in a highly cancer-specific manner. However, whether the cause of their expression is an outcome of a specific regulatory mechanism or nonspecific transcription induced by genome reorganization in cancer remains largely unknown. Here, we investigated a group of lncRNAs that we previously identified to be aberrantly expressed in prostate cancer (PC), called TPCATs.

View Article and Find Full Text PDF

Global changes in chromatin accessibility may drive cancer progression by reprogramming transcription factor (TF) binding. In addition, histone acetylation readers such as bromodomain-containing protein 4 (BRD4) have been shown to associate with these TFs and contribute to aggressive cancers including prostate cancer (PC). Here, we show that chromatin accessibility defines castration-resistant prostate cancer (CRPC).

View Article and Find Full Text PDF