Colvars is an open-source C++ library that provides a modular toolkit for collective-variable-based molecular simulations. It allows practitioners to easily create and implement descriptors that best fit a process of interest and to apply a wide range of biasing algorithms in collective variable space. This paper reviews several features and improvements to Colvars that were added since its original introduction.
View Article and Find Full Text PDFNew functionality is added to the LAMMPS molecular simulation package, which increases the versatility with which LAMMPS can interface with supporting software and manipulate information associated with bonded force fields. We introduce the "type label" framework that allows atom types and their higher-order interactions (bonds, angles, dihedrals, and impropers) to be represented in terms of the standard atom type strings of a bonded force field. Type labels increase the human readability of input files, enable bonded force fields to be supported by the OpenKIM repository, simplify the creation of reaction templates for the REACTER protocol, and increase compatibility with external visualization tools, such as VMD and OVITO.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2020
Pinholin S68 triggers the lytic cycle of bacteriophage φ21 in infected Activated transmembrane dimers oligomerize into small holes and uncouple the proton gradient. Transmembrane domain 1 (TMD1) regulates this activity, while TMD2 is postulated to form the actual "pinholes." Focusing on the TMD2 fragment, we used synchrotron radiation-based circular dichroism to confirm its α-helical conformation and transmembrane alignment.
View Article and Find Full Text PDFMolecular dynamics (MD) simulation engines use a variety of different approaches for modeling molecular systems with force fields that govern their dynamics and describe their topology. These different approaches introduce incompatibilities between engines, and previously published software bridges the gaps between many popular MD packages, such as between CHARMM and AMBER or GROMACS and LAMMPS. While there are many structure building tools available that generate topologies and structures in CHARMM format, only recently have mechanisms been developed to convert their results into GROMACS input.
View Article and Find Full Text PDFIn combination with other spectroscopy, microscopy, and scattering techniques, neutron reflectivity is a powerful tool to characterize biological systems. Specular reflection of neutrons provides structural information at the nanometer and subnanometer length scales, probing the composition and organization of layered materials. Currently, analysis of neutron reflectivity data involves several simplifying assumptions about the structure of the sample under study, affecting the extraction and interpretation of information from the experimental data.
View Article and Find Full Text PDF