Teleosts such as tunas and billfish lay millions of tiny eggs weighing on the order of 0.001 g, whereas chondrichthyes such as sharks and rays produce a few eggs or live offspring weighing about 2% of adult body mass, as much as 10 000 g in some species. Why are the strategies so extreme, and why are intermediate ones absent? Building on previous work, we show quantitatively how offspring size reflects the relationship between growth and death rates.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2015
The fundamental features of growth may be universal, because growth trajectories of most animals are very similar, but a unified mechanistic theory of growth remains elusive. Still needed is a synthetic explanation for how and why growth rates vary as body size changes, both within individuals over their ontogeny and between populations and species over their evolution. Here, we use Bertalanffy growth equations to characterize growth of ray-finned fishes in terms of two parameters, the growth rate coefficient, K, and final body mass, m∞.
View Article and Find Full Text PDFThe current economic paradigm, which is based on increasing human population, economic development, and standard of living, is no longer compatible with the biophysical limits of the finite Earth. Failure to recover from the economic crash of 2008 is not due just to inadequate fiscal and monetary policies. The continuing global crisis is also due to scarcity of critical resources.
View Article and Find Full Text PDFTwo interacting forces influence all populations: the Malthusian dynamic of exponential growth until resource limits are reached, and the Darwinian dynamic of innovation and adaptation to circumvent these limits through biological and/or cultural evolution. The specific manifestations of these forces in modern human society provide an important context for determining how humans can establish a sustainable relationship with the finite Earth.
View Article and Find Full Text PDF